S100A2 | bioCADDIE Data Discovery Index
Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Displaying 8 of 8 results for "S100A2"
i
  1. Crystal structure of Ca2+-free S100A2 at 1.6 A resolution PDB

    ID: PDB:2RGI

    Description: Protein S100-A2

  2. The Structure of Ca2+-loaded S100A2 at 1.3A resolution PDB

    ID: PDB:4DUQ

    Description: Protein S100-A2

  3. Data from: iTRAQ-based quantitative proteomic analysis on S100 calcium binding protein A2 in metastasis of laryngeal cancer Dryad

    DateIssued: 04-27-2015

    Description: lidation of the differentially expressed proteins S100A2, KRT16, FGB and HSPB1 were carried out using quantitative real-time RT-PCR, immunoblot and immunohistochemistry. Functional analysis of one of the highly expressed proteins, S100 calcium binding protein A2 (S100A2), was performed using RNA interference. As a consequence, attenuated S100A2 expression enhanced the ability of HEp-2 cell lines to migrate and invade in vitro. Our investigation complements the current understanding of laryngeal cancer progression. Furthermore, this study supports the concept that enhanced expression of S100A2 may be a promising strategy in developing novel cancer therapeutic drugs....

  4. The data underlying the findings of the study Dryad

    DateIssued: 03-02-2015

    Description: Supplementary data 1: Patient demographic and clinical characteristics. Supplementary data 2: The list of proteins found to be expressed at different ...

    dataset.keywords: S100A2
  5. Transcription profiling of human NSCLC tumor progression OmicsDI

    ID: E-GEOD-7880

    Date Released: 10-12-2011

    Description: less (FZD6, RYK, MYC) and calcium (CALM1, ATB2B1, S100A2) signalling pathways which might play a role in metastasis of tumor cells. Other differentially expressed genes were related to cell cycle (CCND1, CDK2), transcription factors (TTF1, TAF2, YY1), nuclear mRNA splicing and mRNA processing (SFRS1, HNRPL), protein-nucleus import (NUTF2, KPNB1, NUP50) and chromatin modification (HIST1H4C, SMARCC1). In SCC, we found an increased expression of CTNNB1, an important mediator in wingless signalling pathway. Among the down-regulated genes in SCC, the utmost fraction belonged to genes coding for ubiquitin mediated proteolysis (UCHL1, PSMA3, COPS6) and ribosomal proteins (RPS26, RPL7A, RPS15). Other down regulated genes were related to transcription factors (TCEA2, TAF10), nuclear mRNA splicing and mRNA processing (SNRPD2, HNRPM). In conclusion, a distinct pattern of gene expression is found during the progression from primary carcinoma to recurrent NSCLC. Our microarray-based expression profiling revealed interesting novel candidate genes and pathways that may contribute to lung cancer progression. Experiment Overall Design: - 20 patients with primary, untreated non-small cell lung cancer (10adenocarcinomas (AC) and 10 squamous cell carcinomas (SCC)) in comparison to lung tissue of 23 patients with stage IIIB or stage IV non-small cell lung cancer (15 AC and 8 SCC) Experiment Overall Design: - Human HG Focus Array, Affymetrix) were used Experiment Overall Design: - Array data were normalized and analysed for ...

  6. Transcription profiling of human NSCLC tumor progression ArrayExpress

    ID: E-GEOD-7880

    Description: less (FZD6, RYK, MYC) and calcium (CALM1, ATB2B1, S100A2) signalling pathways which might play a role in metastasis of tumor cells. Other differentially expressed genes were related to cell cycle (CCND1, CDK2), transcription factors (TTF1, TAF2, YY1), nuclear mRNA splicing and mRNA processing (SFRS1, HNRPL), protein-nucleus import (NUTF2, KPNB1, NUP50) and chromatin modification (HIST1H4C, SMARCC1). In SCC, we found an increased expression of CTNNB1, an important mediator in wingless signalling pathway. Among the down-regulated genes in SCC, the utmost fraction belonged to genes coding for ubiquitin mediated proteolysis (UCHL1, PSMA3, COPS6) and ribosomal proteins (RPS26, RPL7A, RPS15). Other down regulated genes were related to transcription factors (TCEA2, TAF10), nuclear mRNA splicing and mRNA processing (SNRPD2, HNRPM). In conclusion, a distinct pattern of gene expression is found during the progression from primary carcinoma to recurrent NSCLC. Our microarray-based expression profiling revealed interesting novel candidate genes and pathways that may contribute to lung cancer progression. Experiment Overall Design: - 20 patients with primary, untreated non-small cell lung cancer (10adenocarcinomas (AC) and 10 squamous cell carcinomas (SCC)) in comparison to lung tissue of 23 patients with stage IIIB or stage IV non-small cell lung cancer (15 AC and 8 SCC) Experiment Overall Design: - Human HG Focus Array, Affymetrix) were used Experiment Overall Design: - Array data were normalized and analysed for ...

  7. Molecular profiling of tumor progression in NSCLC BioProject

    ID: PRJNA99911

    Keywords: Transcriptome or Gene expression

    Access Type: download

    dataset.description: less (FZD6, RYK, MYC) and calcium (CALM1, ATB2B1, S100A2) signalling pathways which might play a role in metastasis of tumor cells. Other differentially expressed genes were related to cell cycle (CCND1, CDK2), transcription factors (TTF1, TAF2, YY1), nuclear mRNA splicing and mRNA processing (SFRS1, HNRPL), protein-nucleus import (NUTF2, KPNB1, NUP50) and chromatin modification (HIST1H4C, SMARCC1). In SCC, we found an increased expression of CTNNB1, an important mediator in wingless signalling pathway. Among the down-regulated genes in SCC, the utmost fraction belonged to genes coding for ubiquitin mediated proteolysis (UCHL1, PSMA3, COPS6) and ribosomal proteins (RPS26, RPL7A, RPS15). Other down regulated genes were related to transcription factors (TCEA2, TAF10), nuclear mRNA splicing and mRNA processing (SNRPD2, HNRPM). In conclusion, a distinct pattern of gene expression is found during the progression from primary carcinoma to recurrent NSCLC. Our microarray-based expression profiling revealed interesting novel candidate genes and pathways that may contribute to lung cancer progression. Keywords: Lung cancer, NSCLC, gene expression, progression, Wnt signalling pathway Overall design: - 20 patients with primary, untreated non-small cell lung cancer (10adenocarcinomas (AC) and 10 squamous cell carcinomas (SCC)) in comparison to lung tissue of 23 patients with stage IIIB or stage IV non-small cell lung cancer (15 AC and 8 SCC) - Human HG Focus Array, Affymetrix) were used - Array data were normalized a...
  8. Molecular profiling of tumor progression in NSCLC GEMMA

    ID: 556

    Keywords: functional genomics

    Description: less (FZD6, RYK, MYC) and calcium (CALM1, ATB2B1, S100A2) signalling pathways which might play a role in metastasis of tumor cells. Other differentially expressed genes were related to cell cycle (CCND1, CDK2), transcription factors (TTF1, TAF2, YY1), nuclear mRNA splicing and mRNA processing (SFRS1, HNRPL), protein-nucleus import (NUTF2, KPNB1, NUP50) and chromatin modification (HIST1H4C, SMARCC1). In SCC, we found an increased expression of CTNNB1, an important mediator in wingless signalling pathway. Among the down-regulated genes in SCC, the utmost fraction belonged to genes coding for ubiquitin mediated proteolysis (UCHL1, PSMA3, COPS6) and ribosomal proteins (RPS26, RPL7A, RPS15). Other down regulated genes were related to transcription factors (TCEA2, TAF10), nuclear mRNA splicing and mRNA processing (SNRPD2, HNRPM). In conclusion, a distinct pattern of gene expression is found during the progression from primary carcinoma to recurrent NSCLC. Our microarray-based expression profiling revealed interesting novel candidate genes and pathways that may contribute to lung cancer progression. Last Updated (by provider): May 25 2007 Contributers: Judith Neukirchen Ulrich-Peter Rohr Helene Geddert Michael Rosskopf Ralf Kronenwett Astrid Rohrbeck Rainer Haas Guillermo Garcia-Pardillos...


Displaying 8 of 8 results for "S100A2"