PCA3 | bioCADDIE Data Discovery Index
Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Displaying 20 of 24 results for "PCA3"
i
  1. Phyllastrephus_cabanisi_microsatellites Dryad

    DateIssued: 02-25-2015

    Description: mn per allele): Ase18, Indigo41, Ls1, Ls2, Mcyu4, Pca3, Pca4, Pfi04, Pfl54, WBSW2....

  2. Identification of miRNAs specific for prostate cancer (PCa) ArrayExpress

    ID: E-GEOD-45604

    Description: omarkers, as well as others already known such as PCA3, fusion gene TMPRSS2-ERG, GOLPH2 and SPINK1. - To establish a prediction model for the diagnosis of PCa based on the expression of these biomarkers. - To validate this model within the framework of an opportunist programme of early diagnosis. - Within the framework of this programme, to associate a series of social-demographic, antropometric, life-style and occupational variables for establishing a risk ...

  3. Identification of miRNAs specific for prostate cancer (PCa) BioProject

    ID: PRJNA195380

    Keywords: Transcriptome or Gene expression

    Access Type: download

    dataset.description: omarkers, as well as others already known such as PCA3, fusion gene TMPRSS2-ERG, GOLPH2 and SPINK1. - To establish a prediction model for the diagnosis of PCa based on the expression of these biomarkers. - To validate this model within the framework of an opportunist programme of early diagnosis. - Within the framework of this programme, to associate a series of social-demographic, antropometric, life-style and occupational variables for establishing a risk ...
  4. "This file contains the genotypes for 26 microsatellite loci and 1385 individuals collected in 25 populations of blue tit (Cyanistes caeruleus)" Dryad

    DateIssued: 10-26-2015

    Description: , CcaTgu14, CcaTgu7) or not (NTL; 14 loci: PK11, Pca3, Pca9, Pocc1, Pocc6, Pat-mp2-43, PK12, Ase18, Pdo5, Pca7, Pca4, Pca2, Mcyμ4, Pca8) transcribed to RNA. These individuals were captured in 25 populations located in fragmented woodlands scattered within an area of 1200 km2 in Montes de Toledo, central of Spain....

  5. Prostate cancer stratification using molecular profiles [CamCap ExpressionArray] ArrayExpress

    ID: E-GEOD-70768

    Description: and PTEN deletions, as well as over-expression of PCA3 and AMACR, and loss of MSMB in tumour tissue. A subset of the 100 genes outperforms established clinical predictors of poor prognosis (PSA, Gleason score), as well as previously published gene signatures (p=0•0001). We further show how our molecular profiles can be used for the early detection of aggressive cases in a clinical setting, and inform treatment decisions. Interpretation For the first time this study demonstrates the importance of integrated genomic analyses incorporating both benign and tumour tissue data in identifying molecular alterations leading to generation of robust gene sets that are predictive of clinical outcome in independent patient cohorts. A total of 482 samples from 289 men with prostate cancer from two cohorts were included in this study. The discovery cohort comprised 125 tumour samples from radical prostatectomy (RP) with 118 matched benign samples, and 85 matched blood samples. An additional 4 benign samples from men undergoing Holmium laser enucleation of the prostate (HoLEP) and 16 radical prostatectomy samples from men with castrate-resistant prostate cancer, with 13 matched blood samples were also included. These were assayed on several platforms, including Illumina HT12v4 gene expression arrays, Illumina OMNI2.5M genotyping arrays and Affymetrix SNP6 genotyping arrays. The validation cohort comprised 103 tumour tissue samples from men with prostate cancer, with 99 matched benign tissue samples and 103 matched blood samples. This datasheet describes samples in the DISCOVERY COHORT only, with complete, QCd Illumina HT12v4 data for 13 CRPC samples, 113 tumour samples and 73 matched benign samples. Extensive clinical metadata is available in the associated publication Ross-Adams et al. (2015, Suppl. Table 2)...

  6. Data from: Prediction accuracies for growth and wood attributes of interior spruce in space using genotyping-by-sequencing Dryad

    DateIssued: 05-09-2016

    Description: could be concurrently selected for using PCA2 and PCA3. Conclusions: The application of GS to open-pollinated family testing, the simplest form of tree improvement evaluation methods, was proven to be effective. Prediction accuracies obtained for all traits greatly support the integration of GS in tree breeding. While the within-site GS prediction accuracies were high, the results clearly indicate that single-site GS models ability to predict other sites are unreliable supporting the utilization of multi-site approach. Principle component scores provided an opportunity for the concurrent selection of traits with different phenotypic optima....

  7. Identification of miRNAs specific for prostate cancer (PCa) OmicsDI

    ID: E-GEOD-45604

    Date Released: 06-03-2014

    Description: omarkers, as well as others already known such as PCA3, fusion gene TMPRSS2-ERG, GOLPH2 and SPINK1. - To establish a prediction model for the diagnosis of PCa based on the expression of these biomarkers. - To validate this model within the framework of an opportunist programme of early diagnosis. - Within the framework of this programme, to associate a series of social-demographic, antropometric, life-style and occupational variables for establishing a risk ...

  8. Prostate cancer stratification using molecular profiles [CamCap genotype third set] ArrayExpress

    ID: E-GEOD-73012

    Description: and PTEN deletions, as well as over-expression of PCA3 and AMACR, and loss of MSMB in tumour tissue. A subset of the 100 genes outperforms established clinical predictors of poor prognosis (PSA, Gleason score), as well as previously published gene signatures (p=0•0001). We further show how our molecular profiles can be used for the early detection of aggressive cases in a clinical setting, and inform treatment decisions. Interpretation For the first time this study demonstrates the importance of integrated genomic analyses incorporating both benign and tumour tissue data in identifying molecular alterations leading to generation of robust gene sets that are predictive of clinical outcome in independent patient cohorts. A total of 482 samples from 289 men with prostate cancer from two cohorts were included in this study. The discovery cohort comprised 125 tumour samples from radical prostatectomy (RP) with 118 matched benign samples, and 85 matched blood samples. An additional 4 benign samples from men undergoing Holmium laser enucleation of the prostate (HoLEP) and 16 radical prostatectomy samples from men with castrate-resistant prostate cancer, with 13 matched blood samples were also included. These were assayed on several platforms, including Illumina HT12v4 gene expression arrays, Illumina OMNI2.5M genotyping arrays and Affymetrix SNP6 genotyping arrays. The validation cohort comprised 103 tumour tissue samples from men with prostate cancer, with 99 matched benign tissue samples and 103 matched blood samples. This datasheet describes samples in the DISCOVERY COHORT only, with complete, QCd Illumina HT12v4 data for 13 CRPC samples, 113 tumour samples and 73 matched benign samples....

  9. Prostate cancer stratification using molecular profiles [CamCap genotype second set] ArrayExpress

    ID: E-GEOD-73011

    Description: and PTEN deletions, as well as over-expression of PCA3 and AMACR, and loss of MSMB in tumour tissue. A subset of the 100 genes outperforms established clinical predictors of poor prognosis (PSA, Gleason score), as well as previously published gene signatures (p=0•0001). We further show how our molecular profiles can be used for the early detection of aggressive cases in a clinical setting, and inform treatment decisions. Interpretation For the first time this study demonstrates the importance of integrated genomic analyses incorporating both benign and tumour tissue data in identifying molecular alterations leading to generation of robust gene sets that are predictive of clinical outcome in independent patient cohorts. A total of 482 samples from 289 men with prostate cancer from two cohorts were included in this study. The discovery cohort comprised 125 tumour samples from radical prostatectomy (RP) with 118 matched benign samples, and 85 matched blood samples. An additional 4 benign samples from men undergoing Holmium laser enucleation of the prostate (HoLEP) and 16 radical prostatectomy samples from men with castrate-resistant prostate cancer, with 13 matched blood samples were also included. These were assayed on several platforms, including Illumina HT12v4 gene expression arrays, Illumina OMNI2.5M genotyping arrays and Affymetrix SNP6 genotyping arrays. The validation cohort comprised 103 tumour tissue samples from men with prostate cancer, with 99 matched benign tissue samples and 103 matched blood samples. This datasheet describes samples in the DISCOVERY COHORT only, with complete, QCd Illumina HT12v4 data for 13 CRPC samples, 113 tumour samples and 73 matched benign samples....

  10. Prostate cancer stratification using molecular profiles [CamCap genotype first set] ArrayExpress

    ID: E-GEOD-71965

    Description: and PTEN deletions, as well as over-expression of PCA3 and AMACR, and loss of MSMB in tumour tissue. A subset of the 100 genes outperforms established clinical predictors of poor prognosis (PSA, Gleason score), as well as previously published gene signatures (p=0•0001). We further show how our molecular profiles can be used for the early detection of aggressive cases in a clinical setting, and inform treatment decisions. Interpretation For the first time this study demonstrates the importance of integrated genomic analyses incorporating both benign and tumour tissue data in identifying molecular alterations leading to generation of robust gene sets that are predictive of clinical outcome in independent patient cohorts. A total of 482 samples from 289 men with prostate cancer from two cohorts were included in this study. The discovery cohort comprised 125 tumour samples from radical prostatectomy (RP) with 118 matched benign samples, and 85 matched blood samples. An additional 4 benign samples from men undergoing Holmium laser enucleation of the prostate (HoLEP) and 16 radical prostatectomy samples from men with castrate-resistant prostate cancer, with 13 matched blood samples were also included. These were assayed on several platforms, including Illumina HT12v4 gene expression arrays, Illumina OMNI2.5M genotyping arrays and Affymetrix SNP6 genotyping arrays. The validation cohort comprised 103 tumour tissue samples from men with prostate cancer, with 99 matched benign tissue samples and 103 matched blood samples. This datasheet describes samples in the DISCOVERY COHORT only, with complete, QCd Illumina HT12v4 data for 13 CRPC samples, 113 tumour samples and 73 matched benign samples....

  11. Prostate cancer stratification using molecular profiles [Stockholm genotype] ArrayExpress

    ID: E-GEOD-73076

    Description: and PTEN deletions, as well as over-expression of PCA3 and AMACR, and loss of MSMB in tumor tissue. A subset of the 100 genes outperforms established clinical predictors of poor prognosis (PSA, Gleason score), as well as previously published gene signatures (p=0•0001). We further show how our molecular profiles can be used for the early detection of aggressive cases in a clinical setting, and inform treatment decisions. Interpretation For the first time this study demonstrates the importance of integrated genomic analyses incorporating both benign and tumor tissue data in identifying molecular alterations leading to generation of robust gene sets that are predictive of clinical outcome in independent patient cohorts. A total of 482 samples from 289 men with prostate cancer from two cohorts were included in this study. The discovery cohort comprised 125 tumor samples from radical prostatectomy (RP) with 118 matched benign samples, and 85 matched blood samples. An additional 4 benign samples from men undergoing Holmium laser enucleation of the prostate (HoLEP) and 16 radical prostatectomy samples from men with castrate-resistant prostate cancer, with 13 matched blood samples were also included. These were assayed on several platforms, including Illumina HT12v4 gene expression arrays, Illumina OMNI2.5M genotyping arrays and Affymetrix SNP6 genotyping arrays. The validation cohort comprised 103 tumor tissue samples from men with prostate cancer, with 99 matched benign tissue samples and 103 matched blood samples. This datasheet describes samples in the DISCOVERY COHORT only, with complete, Affymetrix GenomeWideSNP_6 data for 89 tumor samples, 50 matched blood samples and 41 matched benign samples....

  12. Prostate cancer stratification using molecular profiles [Stockholm ExpressionArray] ArrayExpress

    ID: E-GEOD-70769

    Description: and PTEN deletions, as well as over-expression of PCA3 and AMACR, and loss of MSMB in tumour tissue. A subset of the 100 genes outperforms established clinical predictors of poor prognosis (PSA, Gleason score), as well as previously published gene signatures (p=0•0001). We further show how our molecular profiles can be used for the early detection of aggressive cases in a clinical setting, and inform treatment decisions. Interpretation For the first time this study demonstrates the importance of integrated genomic analyses incorporating both benign and tumour tissue data in identifying molecular alterations leading to generation of robust gene sets that are predictive of clinical outcome in independent patient cohorts. A total of 482 samples from 289 men with prostate cancer from two cohorts were included in this study. The discovery cohort comprised 125 tumour samples from radical prostatectomy (RP) with 118 matched benign samples, and 85 matched blood samples. An additional 4 benign samples from men undergoing Holmium laser enucleation of the prostate (HoLEP) and 16 radical prostatectomy samples from men with castrate-resistant prostate cancer, with 13 matched blood samples were also included. These were assayed on several platforms, including Illumina HT12v4 gene expression arrays, Illumina OMNI2.5M genotyping arrays and Affymetrix SNP6 genotyping arrays. The validation cohort comprised 103 tumour tissue samples from men with prostate cancer, with 99 matched benign tissue samples and 103 matched blood samples. This datasheet describes samples in the VALIDATION COHORT only, with complete, QCd Illumina HT12v4 data for 94 RP samples. Extensive clinical metadata is available in the associated publication Ross-Adams et al. (2015, Suppl. Table 2)...

  13. Prostate cancer stratification using molecular profiles [Stockholm genotype] BioProject

    ID: PRJNA296053

    Keywords: Variation

    Access Type: download

    dataset.description: and PTEN deletions, as well as over-expression of PCA3 and AMACR, and loss of MSMB in tumor tissue. A subset of the 100 genes outperforms established clinical predictors of poor prognosis (PSA, Gleason score), as well as previously published gene signatures (p=0•0001). We further show how our molecular profiles can be used for the early detection of aggressive cases in a clinical setting, and inform treatment decisions. Interpretation For the first time this study demonstrates the importance of integrated genomic analyses incorporating both benign and tumor tissue data in identifying molecular alterations leading to generation of robust gene sets that are predictive of clinical outcome in independent patient cohorts. Overall design: A total of 482 samples from 289 men with prostate cancer from two cohorts were included in this study. The discovery cohort comprised 125 tumor samples from radical prostatectomy (RP) with 118 matched benign samples, and 85 matched blood samples. An additional 4 benign samples from men undergoing Holmium laser enucleation of the prostate (HoLEP) and 16 radical prostatectomy samples from men with castrate-resistant prostate cancer, with 13 matched blood samples were also included. These were assayed on several platforms, including Illumina HT12v4 gene expression arrays, Illumina OMNI2.5M genotyping arrays and Affymetrix SNP6 genotyping arrays. The validation cohort comprised 103 tumor tissue samples from men with prostate cancer, with 99 matched benign tissue samples and 103 matched blood samples. This datasheet describes samples in the DISCOVERY COHORT only, with complete, Affymetrix GenomeWideSNP_6 data for 89 tumor samples, 50 matched blood samples and 41 matched benign samples....
  14. Prostate cancer stratification using molecular profiles [CamCap genotype third set] BioProject

    ID: PRJNA295974

    Keywords: Variation

    Access Type: download

    dataset.description: and PTEN deletions, as well as over-expression of PCA3 and AMACR, and loss of MSMB in tumour tissue. A subset of the 100 genes outperforms established clinical predictors of poor prognosis (PSA, Gleason score), as well as previously published gene signatures (p=0•0001). We further show how our molecular profiles can be used for the early detection of aggressive cases in a clinical setting, and inform treatment decisions. Interpretation For the first time this study demonstrates the importance of integrated genomic analyses incorporating both benign and tumour tissue data in identifying molecular alterations leading to generation of robust gene sets that are predictive of clinical outcome in independent patient cohorts. Overall design: A total of 482 samples from 289 men with prostate cancer from two cohorts were included in this study. The discovery cohort comprised 125 tumour samples from radical prostatectomy (RP) with 118 matched benign samples, and 85 matched blood samples. An additional 4 benign samples from men undergoing Holmium laser enucleation of the prostate (HoLEP) and 16 radical prostatectomy samples from men with castrate-resistant prostate cancer, with 13 matched blood samples were also included. These were assayed on several platforms, including Illumina HT12v4 gene expression arrays, Illumina OMNI2.5M genotyping arrays and Affymetrix SNP6 genotyping arrays. The validation cohort comprised 103 tumour tissue samples from men with prostate cancer, with 99 matched benign tissue samples and 103 matched blood samples. This datasheet describes samples in the DISCOVERY COHORT only, with complete, QCd Illumina HT12v4 data for 13 CRPC samples, 113 tumour samples and 73 matched benign samples....
  15. Prostate cancer stratification using molecular profiles [CamCap ExpressionArray] BioProject

    ID: PRJNA289509

    Keywords: Transcriptome or Gene expression

    Access Type: download

    dataset.description: and PTEN deletions, as well as over-expression of PCA3 and AMACR, and loss of MSMB in tumour tissue. A subset of the 100 genes outperforms established clinical predictors of poor prognosis (PSA, Gleason score), as well as previously published gene signatures (p=0•0001). We further show how our molecular profiles can be used for the early detection of aggressive cases in a clinical setting, and inform treatment decisions. Interpretation For the first time this study demonstrates the importance of integrated genomic analyses incorporating both benign and tumour tissue data in identifying molecular alterations leading to generation of robust gene sets that are predictive of clinical outcome in independent patient cohorts. Overall design: A total of 482 samples from 289 men with prostate cancer from two cohorts were included in this study. The discovery cohort comprised 125 tumour samples from radical prostatectomy (RP) with 118 matched benign samples, and 85 matched blood samples. An additional 4 benign samples from men undergoing Holmium laser enucleation of the prostate (HoLEP) and 16 radical prostatectomy samples from men with castrate-resistant prostate cancer, with 13 matched blood samples were also included. These were assayed on several platforms, including Illumina HT12v4 gene expression arrays, Illumina OMNI2.5M genotyping arrays and Affymetrix SNP6 genotyping arrays. The validation cohort comprised 103 tumour tissue samples from men with prostate cancer, with 99 matched benign tissue samples and 103 matched blood samples. This datasheet describes samples in the DISCOVERY COHORT only, with complete, QCd Illumina HT12v4 data for 13 CRPC samples, 113 tumour samples and 73 matched benign samples. Extensive clinical metadata is available in the associated publication Ross-Adams et al. (2015, Suppl. Table 2)...
  16. Prostate cancer stratification using molecular profiles [CamCap genotype second set] BioProject

    ID: PRJNA295975

    Keywords: Variation

    Access Type: download

    dataset.description: and PTEN deletions, as well as over-expression of PCA3 and AMACR, and loss of MSMB in tumour tissue. A subset of the 100 genes outperforms established clinical predictors of poor prognosis (PSA, Gleason score), as well as previously published gene signatures (p=0•0001). We further show how our molecular profiles can be used for the early detection of aggressive cases in a clinical setting, and inform treatment decisions. Interpretation For the first time this study demonstrates the importance of integrated genomic analyses incorporating both benign and tumour tissue data in identifying molecular alterations leading to generation of robust gene sets that are predictive of clinical outcome in independent patient cohorts. Overall design: A total of 482 samples from 289 men with prostate cancer from two cohorts were included in this study. The discovery cohort comprised 125 tumour samples from radical prostatectomy (RP) with 118 matched benign samples, and 85 matched blood samples. An additional 4 benign samples from men undergoing Holmium laser enucleation of the prostate (HoLEP) and 16 radical prostatectomy samples from men with castrate-resistant prostate cancer, with 13 matched blood samples were also included. These were assayed on several platforms, including Illumina HT12v4 gene expression arrays, Illumina OMNI2.5M genotyping arrays and Affymetrix SNP6 genotyping arrays. The validation cohort comprised 103 tumour tissue samples from men with prostate cancer, with 99 matched benign tissue samples and 103 matched blood samples. This datasheet describes samples in the DISCOVERY COHORT only, with complete, QCd Illumina HT12v4 data for 13 CRPC samples, 113 tumour samples and 73 matched benign samples....
  17. Prostate cancer stratification using molecular profiles [Stockholm ExpressionArray] BioProject

    ID: PRJNA289512

    Keywords: Transcriptome or Gene expression

    Access Type: download

    dataset.description: and PTEN deletions, as well as over-expression of PCA3 and AMACR, and loss of MSMB in tumour tissue. A subset of the 100 genes outperforms established clinical predictors of poor prognosis (PSA, Gleason score), as well as previously published gene signatures (p=0•0001). We further show how our molecular profiles can be used for the early detection of aggressive cases in a clinical setting, and inform treatment decisions. Interpretation For the first time this study demonstrates the importance of integrated genomic analyses incorporating both benign and tumour tissue data in identifying molecular alterations leading to generation of robust gene sets that are predictive of clinical outcome in independent patient cohorts. Overall design: A total of 482 samples from 289 men with prostate cancer from two cohorts were included in this study. The discovery cohort comprised 125 tumour samples from radical prostatectomy (RP) with 118 matched benign samples, and 85 matched blood samples. An additional 4 benign samples from men undergoing Holmium laser enucleation of the prostate (HoLEP) and 16 radical prostatectomy samples from men with castrate-resistant prostate cancer, with 13 matched blood samples were also included. These were assayed on several platforms, including Illumina HT12v4 gene expression arrays, Illumina OMNI2.5M genotyping arrays and Affymetrix SNP6 genotyping arrays. The validation cohort comprised 103 tumour tissue samples from men with prostate cancer, with 99 matched benign tissue samples and 103 matched blood samples. This datasheet describes samples in the VALIDATION COHORT only, with complete, QCd Illumina HT12v4 data for 94 RP samples. Extensive clinical metadata is available in the associated publication Ross-Adams et al. (2015, Suppl. Table 2)...
  18. Prostate cancer stratification using molecular profiles [CamCap genotype first set] BioProject

    ID: PRJNA292592

    Keywords: Variation

    Access Type: download

    dataset.description: and PTEN deletions, as well as over-expression of PCA3 and AMACR, and loss of MSMB in tumour tissue. A subset of the 100 genes outperforms established clinical predictors of poor prognosis (PSA, Gleason score), as well as previously published gene signatures (p=0•0001). We further show how our molecular profiles can be used for the early detection of aggressive cases in a clinical setting, and inform treatment decisions. Interpretation For the first time this study demonstrates the importance of integrated genomic analyses incorporating both benign and tumour tissue data in identifying molecular alterations leading to generation of robust gene sets that are predictive of clinical outcome in independent patient cohorts. Overall design: A total of 482 samples from 289 men with prostate cancer from two cohorts were included in this study. The discovery cohort comprised 125 tumour samples from radical prostatectomy (RP) with 118 matched benign samples, and 85 matched blood samples. An additional 4 benign samples from men undergoing Holmium laser enucleation of the prostate (HoLEP) and 16 radical prostatectomy samples from men with castrate-resistant prostate cancer, with 13 matched blood samples were also included. These were assayed on several platforms, including Illumina HT12v4 gene expression arrays, Illumina OMNI2.5M genotyping arrays and Affymetrix SNP6 genotyping arrays. The validation cohort comprised 103 tumour tissue samples from men with prostate cancer, with 99 matched benign tissue samples and 103 matched blood samples. This datasheet describes samples in the DISCOVERY COHORT only, with complete, QCd Illumina HT12v4 data for 13 CRPC samples, 113 tumour samples and 73 matched benign samples....
  19. Prostate cancer stratification using molecular profiles [Stockholm ExpressionArray] OmicsDI

    ID: E-GEOD-70769

    Date Released: 08-20-2015

    Description: and PTEN deletions, as well as over-expression of PCA3 and AMACR, and loss of MSMB in tumour tissue. A subset of the 100 genes outperforms established clinical predictors of poor prognosis (PSA, Gleason score), as well as previously published gene signatures (p=0•0001). We further show how our molecular profiles can be used for the early detection of aggressive cases in a clinical setting, and inform treatment decisions. Interpretation For the first time this study demonstrates the importance of integrated genomic analyses incorporating both benign and tumour tissue data in identifying molecular alterations leading to generation of robust gene sets that are predictive of clinical outcome in independent patient cohorts. A total of 482 samples from 289 men with prostate cancer from two cohorts were included in this study. The discovery cohort comprised 125 tumour samples from radical prostatectomy (RP) with 118 matched benign samples, and 85 matched blood samples. An additional 4 benign samples from men undergoing Holmium laser enucleation of the prostate (HoLEP) and 16 radical prostatectomy samples from men with castrate-resistant prostate cancer, with 13 matched blood samples were also included. These were assayed on several platforms, including Illumina HT12v4 gene expression arrays, Illumina OMNI2.5M genotyping arrays and Affymetrix SNP6 genotyping arrays. The validation cohort comprised 103 tumour tissue samples from men with prostate cancer, with 99 matched benign tissue samples and 103 matched blood samples. This datasheet describes samples in the VALIDATION COHORT only, with complete, QCd Illumina HT12v4 data for 94 RP samples. Extensive clinical metadata is available in the associated publication Ross-Adams et al. (2015, Suppl. Table 2)...

  20. Prostate cancer stratification using molecular profiles [CamCap genotype second set] OmicsDI

    ID: E-GEOD-73011

    Date Released: 09-20-2015

    Description: and PTEN deletions, as well as over-expression of PCA3 and AMACR, and loss of MSMB in tumour tissue. A subset of the 100 genes outperforms established clinical predictors of poor prognosis (PSA, Gleason score), as well as previously published gene signatures (p=0•0001). We further show how our molecular profiles can be used for the early detection of aggressive cases in a clinical setting, and inform treatment decisions. Interpretation For the first time this study demonstrates the importance of integrated genomic analyses incorporating both benign and tumour tissue data in identifying molecular alterations leading to generation of robust gene sets that are predictive of clinical outcome in independent patient cohorts. A total of 482 samples from 289 men with prostate cancer from two cohorts were included in this study. The discovery cohort comprised 125 tumour samples from radical prostatectomy (RP) with 118 matched benign samples, and 85 matched blood samples. An additional 4 benign samples from men undergoing Holmium laser enucleation of the prostate (HoLEP) and 16 radical prostatectomy samples from men with castrate-resistant prostate cancer, with 13 matched blood samples were also included. These were assayed on several platforms, including Illumina HT12v4 gene expression arrays, Illumina OMNI2.5M genotyping arrays and Affymetrix SNP6 genotyping arrays. The validation cohort comprised 103 tumour tissue samples from men with prostate cancer, with 99 matched benign tissue samples and 103 matched blood samples. This datasheet describes samples in the DISCOVERY COHORT only, with complete, QCd Illumina HT12v4 data for 13 CRPC samples, 113 tumour samples and 73 matched benign samples....


Displaying 20 of 24 results for "PCA3"