NTRK2 | bioCADDIE Data Discovery Index
Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Displaying 20 of 30 results for "NTRK2"
i
  1. TIAM1_MOUSE UniProt:Swiss-Prot

    ID: Q60610

    Description: e Phosphoserine Phosphoserine Phosphotyrosine; by NTRK2 Phosphotyrosine Phosphoserine N-myristoyl glycine Reduces phosphatidylinositol phosphate binding Reduces PARD3 binding; when associated with A-645 Reduces PARD3 binding; when associated with A-622...

  2. Genome-wide Identification of Transcriptional Targets of RORA Reveals Direct Regulation of Multiple Genes Associated with Autism Spectrum Disorder ArrayExpress

    ID: E-GEOD-45756

    Description: uding A2BP1, CYP19A1, HSD17B10, ITPR1, NLGN1, and NTRK2, whose expression levels are also decreased in RORA1-repressed human neuronal cells and in prefrontal cortex tissues from individuals with ASD. Conclusion: Findings from this study indicate that RORA transcriptionally regulates A2BP1, CYP19A1, HSD17B10, ITPR1, NLGN1, and NTRK2, and strongly suggest that reduction of this sex hormone-sensitive nuclear receptor in the brain causes dysregulated expression of these genes which, in turn, may contribute to the underlying pathobiology of ASD. Nuclear lysates from the human neuroblastoma cell line SH-SY5Y were chromatin-immunoprecipitated with goat anti-RORA1 antibody vs. normal goat IgG antibody...

  3. Diagnostic value of exome and whole genome sequencing in craniosynostosis BioProject

    ID: PRJEB17650

    Keywords: Other

    Access Type: download

    dataset.description: ith craniosynostosis is currently unknown (AHDC1, NTRK2). In two further families, likely novel disease genes are currently undergoing functional validation. In 5 of the 15 positive cases, the (previously unanticipated) molecular diagnosis had immediate, actionable consequences for either genetic or medical management (mutations in EFNB1, FBN1, KRAS, NTRK2, STAT3). Conclusions. This substantial genetic heterogeneity, and the multiple actionable mutations identified, emphasises the benefits of exome/whole genome sequencing to identify causal mutations in craniosynostosis cases for which routine clinical testing has yielded negative results....
  4. Expression data from Trk-overexpressing NB cell line SY5Y BioProject

    ID: PRJNA118261

    Keywords: Transcriptome or Gene expression

    Access Type: download

    dataset.description: good prognosis to NB patients, expression of TrkB/NTRK2 is associated with unfavorable outcome. We have transfected the neurotrophin-receptor null cell line SY5Y with either full-length TrkA or TrkB and performed transcriptional profiling to analyse the effects of Trk-expression without activation and in a time cour...
  5. Genome-wide Identification of Transcriptional Targets of RORA Reveals Direct Regulation of Multiple Genes Associated with Autism Spectrum Disorder OmicsDI

    ID: E-GEOD-45756

    Date Released: 05-03-2014

    Description: uding A2BP1, CYP19A1, HSD17B10, ITPR1, NLGN1, and NTRK2, whose expression levels are also decreased in RORA1-repressed human neuronal cells and in prefrontal cortex tissues from individuals with ASD. Conclusion: Findings from this study indicate that RORA transcriptionally regulates A2BP1, CYP19A1, HSD17B10, ITPR1, NLGN1, and NTRK2, and strongly suggest that reduction of this sex hormone-sensitive nuclear receptor in the brain causes dysregulated expression of these genes which, in turn, may contribute to the underlying pathobiology of ASD. Nuclear lysates from the human neuroblastoma cell line SH-SY5Y were chromatin-immunoprecipitated with goat anti-RORA1 antibody vs. normal goat IgG antibody...

  6. Genome-wide Identification of Transcriptional Targets of RORA Reveals Direct Regulation of Multiple Genes Associated with Autism Spectrum Disorder BioProject

    ID: PRJNA196175

    Keywords: Epigenomics

    Access Type: download

    dataset.description: uding A2BP1, CYP19A1, HSD17B10, ITPR1, NLGN1, and NTRK2, whose expression levels are also decreased in RORA1-repressed human neuronal cells and in prefrontal cortex tissues from individuals with ASD. Conclusion: Findings from this study indicate that RORA transcriptionally regulates A2BP1, CYP19A1, HSD17B10, ITPR1, NLGN1, and NTRK2, and strongly suggest that reduction of this sex hormone-sensitive nuclear receptor in the brain causes dysregulated expression of these genes which, in turn, may contribute to the underlying pathobiology of ASD. Overall design: Nuclear lysates from the human neuroblastoma cell line SH-SY5Y were chromatin-immunoprecipitated with goat anti-RORA1 antibody vs. normal goat IgG antibody...
  7. First genome-wide association study in an Australian Aboriginal population provides insights into genetic risk factors for Body Mass Index and Type 2 ... OmicsDI

    ID: EGAS00001001004

    Date Released:

    Description: mputed_1000G=2.90x10-7) for BMI lies 5’ of NTRK2, the type 2 neurotrophic tyrosine kinase receptor for brain-derived neurotrophic factor (BDNF) that regulates energy balance downstream of melanocortin-4 receptor (MC4R). PIK3C2G (rs12816270 Pgenotyped=8.06x10-6; rs10841048 Pimputed_1000G=6.28x10-7) was associated with BMI, but not with T2D as reported elsewhere. BMI also associated with CNTNAP2 (rs6960319 Pgenotyped=4.65x10-5; rs13225016 Pimputed_1000G=6.57x10-5), previously identified as the strongest gene-by-environment interaction for BMI in African-Americans. The top hit (rs11240074 Pgenotyped=5.59x10-6, Pimputed_1000G=5.73x10-6) for T2D lies 5’ of BCL9 that, along with TCFL2, promotes beta-catenin’s transcriptional activity in the WNT signaling pathway. Additional hits occurred in genes affecting pancreatic (KCNJ6, KCNA1) and/or GABA (GABRR1, KCNA1) functions. Notable associations observed for genes previously identified at genome-wide significance in other popu...

  8. Transcription profiling of mouse adult and juvenile dura mater (bone) to explore the reossification of large calvarial defects during development OmicsDI

    ID: E-SMDB-3845

    Date Released: 05-02-2014

    Description: Acp5, MMP9, Ctsk) and the multiple candidate gene Ntrk2 were also expressed at higher levels in the juvenile dura mater. CONCLUSIONS: These findings suggest a more differentiated osteoprogenitor population to exist along with a greater presence of osteoclasts in the juvenile dura mater relative to adults. In addition to establishing a baseline difference in gene expression between juvenile and adult dura mater, new genes potentially critical to the regenerative potential of juvenile calvaria were identified....

  9. Long non-coding RNAs and microRNAs involved in integrated co-regulation of neuronal maturation [microRNA expression] OmicsDI

    ID: E-GEOD-44832

    Date Released: 11-01-2014

    Description: RNAs associated with Axin2, Cntn1, Ncam1, Negr1, Ntrk2, Nrxn1 and Sh2b3 displayed an inverse expression profile to their mRNA whereas long non-coding RNA -mRNA pairs for Kit, Prkcb and Ralgds displayed similar expression profiles. These genes were also predicted targets of the altered miRNAs, miR-124, -128, -129-5p, -203, -218, -290-5p, -326, -329, -377 and -495. These microRNAs particularly regulate the cell adhesion molecules, Cntn1, Ncam1, Negr1 and Nrxn1 that determine axonogenesis and dendritogenesis, supporting the observed co-regulation of these biological processes by non-coding RNAs. Verification of expression of these long non-coding RNA-mRNA pairs in an in vitro model of ischemic-reperfusion injury showed an inverse expression profile, thus confirming their role(s) in maintenance of the neuronal structure and function. This neuronal transcriptome (mRNAs, lncRNAs, miRNAs) is in turn orchestrated by C/EBPα/β transcription factors and CTCF, thereby governing intricate control of neuronal development....

  10. Long non-coding RNAs and microRNAs involved in integrated co-regulation of neuronal maturation [mRNA and lncRNA expression] OmicsDI

    ID: E-GEOD-44833

    Date Released: 11-03-2014

    Description: RNAs associated with Axin2, Cntn1, Ncam1, Negr1, Ntrk2, Nrxn1 and Sh2b3 displayed an inverse expression profile to their mRNA whereas long non-coding RNA -mRNA pairs for Kit, Prkcb and Ralgds displayed similar expression profiles. These genes were also predicted targets of the altered miRNAs, miR-124, -128, -129-5p, -203, -218, -290-5p, -326, -329, -377 and -495. These microRNAs particularly regulate the cell adhesion molecules, Cntn1, Ncam1, Negr1 and Nrxn1 that determine axonogenesis and dendritogenesis, supporting the observed co-regulation of these biological processes by non-coding RNAs. Verification of expression of these long non-coding RNA-mRNA pairs in an in vitro model of ischemic-reperfusion injury showed an inverse expression profile, thus confirming their role(s) in maintenance of the neuronal structure and function. This neuronal transcriptome (mRNAs, lncRNAs, miRNAs) is in turn orchestrated by C/EBPα/β transcription factors and CTCF, thereby governing intricate control of neuronal development....

  11. Neurotrophin NT3 promotes ovarian primordial to primary follicle transition OmicsDI

    ID: E-GEOD-20358

    Date Released: 05-01-2014

    Description: , NGF, and the BDNF/neurotrophin-4 (NT4) receptor NTRK2 are expressed, while BDNF, NT4, and the NGF receptor NTRK1 are not detectable. Inhibition of the NTRK3 receptor with the tyrophostin AG 879 resulted in oocyte death and a significant (P<0.01) reduction in follicle pool size. Inhibition of the NTRK receptors with K252a slowed primordial to primary follicle transition. A microarray analysis demonstrated that a small number of genes were differentially expressed after NT3 treatment. Observations indicate that the neurotrophin NT3, acting through the NTRK3 receptor in oocytes, promotes the primordial to primary follicle transition. Reproduction (2009) 138, pp. 697-707 We used microarrays to determine genes expressed differentially between control and NT3 (neurotrophin-3) treated P4 ovary. RNA samples from 3 control groups are compared to 3 NT3 treated ovary groups....

  12. Transcription profiling of mouse adult and juvenile dura mater (bone) to explore the reossification of large calvarial defects during development ArrayExpress

    ID: E-SMDB-3845

    Description: Acp5, MMP9, Ctsk) and the multiple candidate gene Ntrk2 were also expressed at higher levels in the juvenile dura mater. CONCLUSIONS: These findings suggest a more differentiated osteoprogenitor population to exist along with a greater presence of osteoclasts in the juvenile dura mater relative to adults. In addition to establishing a baseline difference in gene expression between juvenile and adult dura mater, new genes potentially critical to the regenerative potential of juvenile calvaria were identified....

  13. Long non-coding RNAs and microRNAs involved in integrated co-regulation of neuronal maturation [microRNA expression] ArrayExpress

    ID: E-GEOD-44832

    Description: RNAs associated with Axin2, Cntn1, Ncam1, Negr1, Ntrk2, Nrxn1 and Sh2b3 displayed an inverse expression profile to their mRNA whereas long non-coding RNA -mRNA pairs for Kit, Prkcb and Ralgds displayed similar expression profiles. These genes were also predicted targets of the altered miRNAs, miR-124, -128, -129-5p, -203, -218, -290-5p, -326, -329, -377 and -495. These microRNAs particularly regulate the cell adhesion molecules, Cntn1, Ncam1, Negr1 and Nrxn1 that determine axonogenesis and dendritogenesis, supporting the observed co-regulation of these biological processes by non-coding RNAs. Verification of expression of these long non-coding RNA-mRNA pairs in an in vitro model of ischemic-reperfusion injury showed an inverse expression profile, thus confirming their role(s) in maintenance of the neuronal structure and function. This neuronal transcriptome (mRNAs, lncRNAs, miRNAs) is in turn orchestrated by C/EBPα/β transcription factors and CTCF, thereby governing intricate control of neuronal development....

  14. Neurotrophin NT3 promotes ovarian primordial to primary follicle transition ArrayExpress

    ID: E-GEOD-20358

    Description: , NGF, and the BDNF/neurotrophin-4 (NT4) receptor NTRK2 are expressed, while BDNF, NT4, and the NGF receptor NTRK1 are not detectable. Inhibition of the NTRK3 receptor with the tyrophostin AG 879 resulted in oocyte death and a significant (P<0.01) reduction in follicle pool size. Inhibition of the NTRK receptors with K252a slowed primordial to primary follicle transition. A microarray analysis demonstrated that a small number of genes were differentially expressed after NT3 treatment. Observations indicate that the neurotrophin NT3, acting through the NTRK3 receptor in oocytes, promotes the primordial to primary follicle transition. Reproduction (2009) 138, pp. 697-707 We used microarrays to determine genes expressed differentially between control and NT3 (neurotrophin-3) treated P4 ovary. RNA samples from 3 control groups are compared to 3 NT3 treated ovary groups....

  15. Long non-coding RNAs and microRNAs involved in integrated co-regulation of neuronal maturation [mRNA and lncRNA expression] ArrayExpress

    ID: E-GEOD-44833

    Description: RNAs associated with Axin2, Cntn1, Ncam1, Negr1, Ntrk2, Nrxn1 and Sh2b3 displayed an inverse expression profile to their mRNA whereas long non-coding RNA -mRNA pairs for Kit, Prkcb and Ralgds displayed similar expression profiles. These genes were also predicted targets of the altered miRNAs, miR-124, -128, -129-5p, -203, -218, -290-5p, -326, -329, -377 and -495. These microRNAs particularly regulate the cell adhesion molecules, Cntn1, Ncam1, Negr1 and Nrxn1 that determine axonogenesis and dendritogenesis, supporting the observed co-regulation of these biological processes by non-coding RNAs. Verification of expression of these long non-coding RNA-mRNA pairs in an in vitro model of ischemic-reperfusion injury showed an inverse expression profile, thus confirming their role(s) in maintenance of the neuronal structure and function. This neuronal transcriptome (mRNAs, lncRNAs, miRNAs) is in turn orchestrated by C/EBPα/β transcription factors and CTCF, thereby governing intricate control of neuronal development....

  16. Spatial transcriptome analysis reveals Notch pathway-associated prognostic markers in IDH1 wild-type glioblastoma involving the subventricular zone BioProject

    ID: PRJNA326272

    Keywords: Transcriptome or Gene expression

    Access Type: download

    dataset.description: R 1.61) predicted inferior, and overexpression of NTRK2 (p = 0.049; HR 0.66) and PIR (p = 0.025; HR 0.62) superior overall survival (OS). Additionally, overexpression of DLL3 was predictive of shorter progression-free survival (PFS) (p = 0.043; HR 1.64). Multivariate analysis revealed overexpression of HES4 to be independently associated with inferior OS (p = 0.033; HR 2.03), and overexpression of DLL3 with inferior PFS (p = 0.046; HR 1.65). Conclusions: We identified four genes with SVZ-dependent expression and prognostic significance, among those HES4 and DLL3 as part of Notch signaling, suggesting further evaluation of location-tailored targeted therapies. Overall design: Comparative transcriptomic analysis of 36 glioblastomas in different locations of the brain....
  17. Comparison of Environmental and Genetic models of ADHD ArrayExpress

    ID: E-GEOD-12457

    Description: he expression levels of genes Gnal, COMT, Adrbk1, Ntrk2, Hk1, Syt11 and Csnk1a1 were altered in both the SHR rats and the PCB-exposed SD rats. Arrb2, Stx12, Aqp6, Syt1, Ddc and Pgk1 expression levels were changed only in the PCB-exposed SD rats. Genes with altered expression only in the SHRs included Oprm1, Calcyon, Calmodulin, Lhx1 and Hes6.The epigenetic genes Crebbp, Mecp2 and Hdac5 are significantly altered in both models. The data provide strong evidence that genes and environment can affect different set of genes in two different models of ADHD and yet result in the similar disease-like symptoms. The brains from 28 male rats (8 SHR, 8 Sprague-Dawley (SD) controls, 8 Wistar-Kyoto (WKY) controls, and 4 PCB-exposed SD rats) were harvested at postnatal day 55-65 and RNA was isolated from six brain regions of interest. The RNA was analyzed for differences in expression of a set of 308 probe sets interrogating 218 unique genes considered highly relevant to ADHD or epigenetic gene regulation using the Rat RAE 230 2.0 GeneChip (Affymetrix). Selected observations were confirmed by real time quantitative RT-PCR....

  18. Transcriptional Profile Analysis of RPGRORF15 frameshift mutation ArrayExpress

    ID: E-GEOD-19124

    Description: ptotic processes were altered at 7 weeks (CAMK2G, NTRK2, PRKCB, RALA, RBBP6, RNF41, SEPT5, SMYD3, SPP1, and TUBB2C) and 16 weeks (SLC25A5 and NKAP). Furthermore, DE genes at 7 weeks (ELOVL6, GLOD4, NDUFS4, and REEP1) and 16 weeks (SLC25A5 and TARS2) are related to mitochondrial functions. Real-time PCR of 11 genes confirmed the microarray results and showed differential expression for additional genes not on the array, such as GFAP, RHO, OPN1SW, CNGB3 and the mutated RPGR. Western blotting and IHC analysis also confirmed the high reliability of the presented transcriptomic data. Conclusions: A list of mutated genes in RPGRORF15 diseased retinas, which are likely candidates to further study their role in age-related photoreceptor degeneration diseases, is reported at different crucial ages. The results indicate that at 7 weeks a combination of non-classical anti- and pro-apoptotic genes appears to be involved in photoreceptor degeneration, whereas at both 7 and 16 weeks expression of mitochondria related genes indicates they may play a relevant role in the disease process. 3 biological replicates each for normal and XLPRA2 affected retinas were analyzed at 7 and 16 weeks of age. Each individual sample was hybridized in a reference design using a custom-made retinal cDNA microarray against brain pool to enable cross compari...

  19. Transcriptional Profile Analysis of RPGRORF15 frameshift mutation OmicsDI

    ID: E-GEOD-19124

    Date Released: 05-02-2014

    Description: ptotic processes were altered at 7 weeks (CAMK2G, NTRK2, PRKCB, RALA, RBBP6, RNF41, SEPT5, SMYD3, SPP1, and TUBB2C) and 16 weeks (SLC25A5 and NKAP). Furthermore, DE genes at 7 weeks (ELOVL6, GLOD4, NDUFS4, and REEP1) and 16 weeks (SLC25A5 and TARS2) are related to mitochondrial functions. Real-time PCR of 11 genes confirmed the microarray results and showed differential expression for additional genes not on the array, such as GFAP, RHO, OPN1SW, CNGB3 and the mutated RPGR. Western blotting and IHC analysis also confirmed the high reliability of the presented transcriptomic data. Conclusions: A list of mutated genes in RPGRORF15 diseased retinas, which are likely candidates to further study their role in age-related photoreceptor degeneration diseases, is reported at different crucial ages. The results indicate that at 7 weeks a combination of non-classical anti- and pro-apoptotic genes appears to be involved in photoreceptor degeneration, whereas at both 7 and 16 weeks expression of mitochondria related genes indicates they may play a relevant role in the disease process. 3 biological replicates each for normal and XLPRA2 affected retinas were analyzed at 7 and 16 weeks of age. Each individual sample was hybridized in a reference design using a custom-made retinal cDNA microarray against brain pool to enable cross compari...

  20. Comparison of Environmental and Genetic models of ADHD OmicsDI

    ID: E-GEOD-12457

    Date Released: 03-27-2012

    Description: he expression levels of genes Gnal, COMT, Adrbk1, Ntrk2, Hk1, Syt11 and Csnk1a1 were altered in both the SHR rats and the PCB-exposed SD rats. Arrb2, Stx12, Aqp6, Syt1, Ddc and Pgk1 expression levels were changed only in the PCB-exposed SD rats. Genes with altered expression only in the SHRs included Oprm1, Calcyon, Calmodulin, Lhx1 and Hes6.The epigenetic genes Crebbp, Mecp2 and Hdac5 are significantly altered in both models. The data provide strong evidence that genes and environment can affect different set of genes in two different models of ADHD and yet result in the similar disease-like symptoms. The brains from 28 male rats (8 SHR, 8 Sprague-Dawley (SD) controls, 8 Wistar-Kyoto (WKY) controls, and 4 PCB-exposed SD rats) were harvested at postnatal day 55-65 and RNA was isolated from six brain regions of interest. The RNA was analyzed for differences in expression of a set of 308 probe sets interrogating 218 unique genes considered highly relevant to ADHD or epigenetic gene regulation using the Rat RAE 230 2.0 GeneChip (Affymetrix). Selected observations were confirmed by real time quantitative RT-PCR....


Displaying 20 of 30 results for "NTRK2"