Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Repositories
  • CCDC (656,223)
  • UniProt:Swiss-Prot (438,182)
  • BioProject (226,434)
  • Figshare (192,552)
  • PDB (131,204)
  • Dryad (100,545)
  • OmicsDI (78,201)
  • ArrayExpress (69,996)
  • Dataverse (60,303)
  • NeuroMorpho.Org (50,356)
    • SRA (43,089)
    • CIL (10,226)
    • ICPSR (9,857)
    • UKDA (8,799)
    • PeerJ (6,214)
    • GeneNetwork (4,595)
    • Zenodo (4,544)
    • GEO (4,348)
    • ProteomeXchange (3,397)
    • RGD (3,247)
    • PDBe:EMDB (2,367)
    • GEMMA (2,285)
    • GTex (1,622)
    • BMRB (1,490)
    • VectorBase (1,445)
    • NITRCIR (1,391)
    • NeuroVault:Cols (1,154)
    • GND (1,018)
    • dbGaP (979)
    • MorphoBank (828)
    • NURSA (547)
    • Retina (384)
    • MPD (376)
    • Metabolomics (362)
    • NeuroVault:NIDM (353)
    • SBGrid (328)
    • GigaDB (319)
    • SimTK (305)
    • LINCS (287)
    • ImmPort (222)
    • Scientific Data (193)
    • NIDDKCR (151)
    • Epigenomics (128)
    • LSHTM (118)
    • NIMH (98)
    • MITLCP (93)
    • Thieme (87)
    • PhysioBank (82)
    • PeptideAtlas (75)
    • Databrary (74)
    • TCIA (71)
    • CRCNS (71)
    • Ndar Papers (65)
    • openfMRI (55)
    • LSDB (55)
    • CEDAR (54)
    • CXIDB (52)
    • Adaptive Biotechnologies (49)
    • GDC (39)
    • UCSF-CTSI (32)
    • CVRG (29)
    • YPED (27)
    • JHUDMS (23)
    • FDZ-DZA (21)
    • NeuroVault:Atlases (18)
    • Wormbase (11)
    • NSGM (10)
    • NSRR (10)
    • ADA (9)
    • CANDI (3)
    • BILS (1)
    • MBF (1)
    • CTN (51)
    • ClinicalTrials.gov (5,667)
    • ClinVar (208,560)

Feedback?

If you are having problems using our tools, or if you would just like to send us some feedback, please post your questions on GitHub.

Displaying 20 of 100,545 results for " "
i
Switch View:
Sorted By:
Title Date Issued Date Released Description
Data from: Symbiont community and host genetic structure of the brain coral Platygyra verweyi, at the outlet of a nuclear power plant and adjacent areas
07-18-2012 08-23-2012
In the context of rising seawater temperatures associated with climate change, the issue of whether coral holobionts deal with this challenge by shuffling their associations with stress- and/or heat-tolerant Symbiodinium, by generating heat-resistant host genotypes, or both is important for coral survival. In the present study, the composition of communities of the endosymbiont Symbiodinium and the population genetics of the coral host Platygyra verweyi were examined in a reef impacted by hot water discharged from the outlet of a nuclear power plant in operation in Kenting, Southern Taiwan since 1984. The water at this site is 2.0-3.0 ºC warmer than adjacent reefs in summer, which have an average seawater temperature of 29.0 ºC. The data were compared with those for the same species at other sites within 12 km of the outlet site. Platygyra verwyei was associated with one or both of Symbiodinium types C3 (heat sensitive) and D1a (heat tolerant) at all sites with the latter being the dominant at the nuclear power plant outlet. The proportion of C3 in populations increased gradually with increasing distance from the hot-water discharge. Genetic analysis of the Platygyra verweyi host using mitochondrial and nuclear markers showed no genetic differentiation among sites. Changes in the composition of Symbiodinium types associated with P. verweyi among closely located sites in Kenting suggested that this coral might have acclimatized to the constant thermal stress by selective association with heat-tolerant Symbiodinium types, whereas the role of the host in adaptation was inconclusive.
Data from: Comparing taxonomic and geographic scales in the morphologic disparity of Ordovician through Early Silurian Laurentian Crinoids
09-01-2012 05-09-2013
Interpretations of morphologic radiations and macroevolutionary patterns are dependent on a priori choices of taxonomic and geographic scales of study. The results of disparity analysis at varying taxonomic (species and genus) and geographic (regional, biofacies, and community) scales are examined in a study of Ordovician though Early Silurian crinoids. Using discrete morphologic characters, we examined the disparity of 421 crinoids from 65 Laurentian biofacies. Crinoid disparity differs when analyzed at the regional and biofacies levels. Regardless of fluctuations in regional crinoid disparity, average within-biofacies disparity was static throughout the Ordovician, deviating only during the Silurian because of the proliferation of the morphologically aberrant myelodactylid crinoids. The choice of taxonomic level does not have an effect at the biofacies level. However, at the regional level, the two taxonomic scales (genus and species) can produce different results because of variation in the number of species per genus through time and the amount of morphologic variation within individual genera. Weighting disparity by abundance provides a metric combining morphology and community structure. Average weighted disparity at the community level showed patterns similar to that of the biofacies-level disparity curve, but this metric has a greater degree of variation between biofacies. Biofacies with a low ratio of weighted to unweighted disparity display the distinctive community structure (based on aerosol filtration theory) that is often reported in crinoid assemblages.
Data from: Pleistocene survival on central Alpine nunataks: genetic evidence from the jumping bristletail Machilis pallida
10-12-2012 10-23-2012
Mechanisms of survival during the Pleistocene glaciation periods have been studied for more than a century. Until now, molecular studies that confirmed animal survival on Alpine nunataks, i.e., ice-free summits surrounded by glaciers, were restricted to peripheral areas. Here, we search for molecular signatures of inner-Alpine survival of the narrow-endemic and putatively parthenogenetic Alpine jumping bristletail Machilis pallida combining mitochondrial and AFLP data from its three known populations. The mitochondrial data indicate survival on both peripheral and central nunataks, the latter suggesting that refugia in the centre of the Alpine main ridge were more widespread than previously recognised. Incongruences between mitochondrial and AFLP patterns suggest a complex evolutionary history of the species and may be explained via parallel fixation of parthenogenesis of different origins during the Last Glacial Maximum. We suggest that the inferred parthenogenesis may have been essential for central-nunatak survival, but may pose a serious threat for M. pallida in consideration of the present climatic changes.
Data from: Migratory constraints on yolk precursors limit yolk androgen deposition and underlie a brood reduction strategy in rockhopper penguins
07-18-2012 10-26-2015
Hormonally mediated maternal effects link maternal phenotype and environmental conditions to offspring phenotype. The production of lipid-rich maternal yolk precursors may provide a mechanism by which lipophilic steroid hormones can be transported to developing yolks, thus predicting a positive correlation between yolk precursors in mothers and androgen levels in eggs. Using rockhopper penguins (Eudyptes chrysocome), which produce a two-egg clutch characterized by extreme egg-size dimorphism, reversed hatching asynchrony and brood-reduction, we examined correlations between circulating concentrations of the primary yolk-precursor vitellogenin (VTG) and levels of yolk androgens. Previous work in Eudyptes penguins has shown that egg-size dimorphism is the product of migratory constraints on yolk precursor production. We predicted that if yolk precursors are constrained, androgen transport to developing yolks would be similarly constrained. We reveal positive linear relationships between maternal VTG and androgens in small A-eggs but not larger B-eggs, which is consistent with a migratory constraint operating on the A-egg. Results suggest that intra-clutch variation in total yolk androgen levels depends on the production and uptake of yolk precursors. The brood reduction strategy common to Eudyptes might thus be best described as the result of a migratory constraint.
Data from: Testing for ecological limitation of diversification: a case study using parasitic plants
08-20-2012 10-19-2015
Imbalances in phylogenetic diversity could be the result of variable unbounded diversification rates, differing limits on diversity, or a combination of the two. We propose an approach to distinguish between rates and limits as the primary cause of phylogenetic imbalance, using parasitic plants as a model. With sister-taxon comparisons, we show that parasitic plant lineages are typically much less diverse than their autotrophic sisters. We then use age estimates for taxa used in the sister-taxon comparisons to test for correlations between clade age and diversity. We find that parasitic plant diversity is not significantly correlated with the age of the lineage, whereas there is a strong positive correlation between the age and diversity of autotrophic sister lineages. The Ericaceae sister-pair Monotropoideae (parasitic) and Arbutoideae (autotrophic) are sufficiently well samples at the species level to allow more parametric comparisons of diversification patterns. Model-fitting for this group supports ecological limitation in Monotropoideae and unconstrained diversification in Arbutoideae. Thus, differences in diversity between parasitic plants and their autotrophic sisters might be caused by a mixture of ecological limitation and unbounded diversification. A combination of sister-taxon comparisons of diversity and age, coupled with model-fitting of well-sampled phylogenies of focal taxa, provides a powerful test of likely causes of asymmetry in the diversity of lineages.
Data from: Changes in Bivalve functional and assemblage ecology in response to environmental change in the Caribbean Neogene
09-01-2012 05-09-2013
We documented changes in the relative abundance of bivalve genera and functional groups in the southwest Caribbean over the past 11 Myr to determine their response to oceanographic changes associated with the closure of the Central American Seaway ca. 3.5 Ma. Quantitative bulk samples from 29 localities yielded 106,000 specimens in 145 genera. All genera were assigned to functional groups based on diet, relationship to the substrate, and mobility. Ordinations of assemblages based on quantitative data for functional groups demonstrated strong shifts in community structure, with a stark contrast between assemblages older than 5 Ma and those younger than 3.5 Ma. These changes are primarily due to an increase in the abundance of attached epifaunal bivalves (e.g., Chama, Arcopsis, and Barbatia) and a decrease in infaunal bivalves (e.g., Varicorbula and Caryocorbula). Taxa associated with seagrasses, including deposit-feeding and chemosymbiotic bivalves (e.g., Lucina), also increased in relative abundance compared to suspension feeders. The composition of bivalve assemblages is correlated with the carbonate content of sediments and the percentage of skeletal biomass that is coral. Our results strongly support the hypothesis that increases in the extent of coral reefs and Thalassia communities were important drivers of biologic turnover in Neogene Caribbean benthic communities.
Data from: Fine-scale genetic population structure in a mobile marine mammal: inshore bottlenose dolphins in Moreton Bay, Australia
08-09-2012 10-19-2015
Highly mobile marine species in areas with no obvious geographical barriers are expected to show low levels of genetic differentiation. However, small-scale variation in habitat may lead to resource polymorphisms and drive local differentiation by adaptive divergence. Using nuclear microsatellite genotyping at 20 loci, and mitochondrial control region sequencing, we investigated fine-scale population structuring of inshore bottlenose dolphins (Tursiops aduncus) inhabiting a range of habitats in and around Moreton Bay, Australia. Bayesian structure analysis identified two genetic clusters within Moreton Bay, with evidence of admixture between them (F_ST = 0.05, P = 0.001). There was only weak isolation by distance but one cluster of dolphins was more likely to be found in shallow southern areas and the other in the deeper waters of the central northern bay. In further analysis removing admixed individuals, southern dolphins appeared genetically restricted with lower levels of variation (AR = 3.252, π = 0.003) and high mean relatedness (r = 0.239) between individuals. In contrast, northern dolphins were more diverse (AR = 4.850, π = 0.009) and were mixing with a group of dolphins outside the bay (microsatellite-based STRUCTURE analysis), which appears to have historically been distinct from the bay dolphins (mtDNA Φ_ST = 0.272, P < 0.001). This study demonstrates the ability of genetic techniques to expose fine-scale patterns of population structure and explore their origins and mechanisms. A complex variety of inter-related factors including local habitat variation, differential resource use, social behaviour and learning, and anthropogenic disturbances are likely to have played a role in driving fine-scale population structure amongst bottlenose dolphins in Moreton Bay.
Data from: Effects of gene flow on phenotype matching between two varieties of Joshua tree (Yucca brevifolia; Agavaceae) and their pollinators
01-28-2013 06-10-2013
In animal-pollinated plants, local adaptation to pollinator behaviour or morphology can restrict gene flow among plant populations; but gene flow may also prevent divergent adaptation. Here, we examine possible effects of gene flow on plant-pollinator trait matching in two varieties of Joshua tree (Agavaceae: Yucca brevifolia). The two varieties differ in strikingly in floral morphology, which matches differences in the morphology of their pollinators. However, this co-divergence is not present at a smaller scale: within the two varieties of Joshua tree, variation in floral morphology between demes is not correlated with differences in moth morphology. We use population genetic data for Joshua tree and its pollinators to test the hypotheses that gene flow between Joshua tree populations is structured by pollinator specificity, and that gene flow within the divergent plant-pollinator associations “swamps” fine-scale co-adaptation. Our data show that Joshua tree populations are structured by pollinator association, but the two tree varieties are only weakly isolated—meaning that their phenotypic differences are maintained in the face of significant gene flow. Coalescent analysis of gene flow between the two Joshua tree types suggests that it may be shaped by asymmetric pollinator specificity, which has been observed in a narrow zone of sympatry. Finally, we find evidence suggesting that gene flow among Joshua tree sites may shape floral morphology within one plant-pollinator association, but not the other.
Data from: Homage to Bateman: sex roles predict sex differences in sexual selection
04-16-2013 10-26-2015
Classic sex role theory predicts that sexual selection should be stronger in males in taxa showing conventional sex roles and stronger in females in role reversed mating systems. To test this very central prediction and to assess the utility of different measures of sexual selection, we estimated sexual selection in both sexes in four seed beetle species with divergent sex roles using a novel experimental design. We found that sexual selection was sizeable in females and the strength of sexual selection was similar in females and males in role-reversed species. Sexual selection was overall significantly stronger in males than in females and residual selection formed a substantial component of net selection in both sexes. Furthermore, sexual selection in females was stronger in role-reversed species compared to species with conventional sex roles. Variance-based measures of sexual selection (the Bateman gradient and selection opportunities) were better predictors of sexual dimorphism in reproductive behavior and morphology across species compared to trait-based measures (selection differentials). Our results highlight the importance of using assays that incorporate components of fitness manifested after mating. We suggest that the Bateman gradient is generally the most informative measure of the strength of sexual selection in comparisons across sexes and/or species.
Data from: Ecological co-associations influence species’ responses to past climatic change: an example from a Sonoran Desert bark beetle
06-13-2013 06-13-2014
Ecologically interacting species may have phylogeographic histories that are shaped both by features of their abiotic landscape, and by biotic constraints imposed by their co-association. The Baja California peninsula provides an excellent opportunity to examine the influence of abiotic vs. biotic factors on patterns of diversity in plant-insect species. This is because past climatic and geological changes impacted the genetic structure of plants quite differently to that of co-distributed free-living animals (e.g., herpetofauna and small mammals). Thus, ‘plant-like’ patterns should be discernible in host-specific insect herbivores. Here we investigate the population history of a monophagous bark beetle, Araptus attenuatus, and consider drivers of phylogeographic patterns in light of previous work on its host plant, Euphorbia lomelii. Based on mitochondrial and nuclear markers, we found that the evolutionary history of A. attenuatus exhibits similarities to host plant that are attributable to both biotic and abiotic processes. Southward range expansion and recent colonization of continental Sonora peninsula appear to be unique to this taxon pair, and likely reflect influences of the host plant. On the other hand, abiotic factors with landscape-level influences on suites of co-distributed taxa, such as Plio- and Pleistocene-aged marine incursions in the region, also left genetic signatures in beetle populations. Superimposed on these similarities, bark beetle-specific patterns and processes were also evident. Taken together, this work illustrates that the evolutionary history of species-specific insect herbivores may represent a mosaic of influences, including—but not limited to—those imposed by the host plant.
Data from: A molecular analysis of African lion (Panthera leo) mating structure and extra-group paternity in Etosha National Park
03-18-2013 04-26-2013
The recent incorporation of molecular methods into analyses of social and mating systems has provided evidence that mating patterns often differ from those predicted by group social organization. Based on field studies and paternity analyses at a limited number of sites, African lions are predicted to exhibit a strict within-pride mating system. Extra-group paternity has not been previously reported in African lions; however, observations of extra-group associations among lions inhabiting Etosha National Park in Namibia suggest deviation from the predicted within-pride mating pattern. We analyzed variation in 14 microsatellite loci in a population of 164 African lions in Etosha National Park. Genetic analysis was coupled with demographic and observational data to examine pride structure, relatedness, and extra-group paternity (EGP). EGP was found to occur in 57% of prides where paternity was analyzed (n = 7) and the overall rate of EGP in this population was 41% (n = 34). Group sex ratio had a significant effect on the occurrence of EGP (p < 0.05), indicating that variation in pride-level social structure may explain intergroup variation in EGP. Prides with a lower male to female ratio were significantly more likely to experience EGP in this population. The results of this study challenge the current models of African lion mating systems and provide evidence that social structure may be an important indicator of EGP in some social mammals.
Data from: Microevolutionary processes generate phylogenomic discordance at ancient divergences
02-04-2013 06-05-2013
Stochastic population processes may cause differences between species histories and gene histories. These processes are assumed to only influence the most recent divergences in the tree of life; however, there may be under-appreciated potential for microevolutionary processes to impact deep divergences. I used multispecies coalescent models to determine the impact of stochastic processes on deep phylogenomic histories. Here I show phylogenomic discordance between gene histories and species histories is expected at deep divergences for many eukaryotic taxa, and the probability of discordance increases with population size, generation time, and the number of species in the tree. Five eukaryotic clades (angiosperms, birds, harpaline beetles, mammals, and nymphalid butterflies) demonstrate significant discordance potential at divergences over 50 million years old, and this discordance potential is independent of the age of divergence. These findings demonstrate population processes acting over very short timescales will leave a lasting impact on genomic histories, even for divergence events occurring tens to hundreds of millions of years ago.
Data from: Operational sex ratio but not density affects sexual selection in a fish
02-25-2013 10-15-2015
The operational sex ratio (OSR) and density are considered important factors affecting the strength of sexual selection. While there is increasing evidence that OSR and density affect the potential for sexual selection, few studies have addressed whether this is realized in phenotypic selection and how the two factors interact. We manipulated OSR (three levels) and male density (two levels) in 36 experimental breeding populations of Gobiusculus flavescens – a fish with paternal care. We measured mating competition behavior, the opportunity for selection (I), and selection on four morphological traits in males. We found sexual selection on two male traits, with the strongest selection being 20% of I. As predicted from OSR theory, increasing female scarcity caused males to become more competitive, concomitant with an increase in I and selection on morphological traits. Model simulations of I based on random mating (Imin) and maximum mate monopolization (Imax) demonstrated that the potential for sexual selection was close to its theoretical maximum across the range of OSRs. However, male density and its interaction with the OSR did not affect sexual selection. We argue that a multifaceted approach, combining mating behavior and selection analyses, can help us to understand how ecological factors affect sexual selection.
Data from: Distinct neural and neuromuscular strategies underlie independent evolution of simplified advertisement calls
04-07-2013 05-16-2013
Independent or convergent evolution can underlie phenotypic similarity of derived behavioural characters. Determining the underlying neural and neuromuscular mechanisms sheds light on how these characters arose. One example of evolutionarily derived characters is a temporally simple advertisement call of male African clawed frogs (Xenopus) that arose at least twice independently from a more complex ancestral pattern. How did simplification occur in the vocal circuit? To distinguish shared from divergent mechanisms, we examined activity from the calling brain and vocal organ (larynx) in two species that independently evolved simplified calls. We find that each species uses distinct neural and neuromuscular strategies to produce the simplified calls. Isolated Xenopus borealis brains produce fictive vocal patterns that match temporal patterns of actual male calls; the larynx converts nerve activity faithfully into muscle contractions and single clicks. In contrast, fictive patterns from isolated Xenopus boumbaensis brains are short bursts of nerve activity; the isolated larynx requires stimulus bursts to produce a single click of sound. Thus, unlike X. borealis, the output of the X. boumbaensis hindbrain vocal pattern generator is an ancestral burst-type pattern, transformed by the larynx into single clicks. Temporally simple advertisement calls in genetically distant species of Xenopus have thus arisen independently via reconfigurations of central and peripheral vocal neuroeffectors.
Data from: Spatial scale affects landscape genetic analysis of a wetland grasshopper
03-04-2013 03-04-2014
Most landscape genetic studies assess the impact of landscape elements on species' dispersal and gene flow. Many of these studies perform their analysis on all possible population pairs in a study area and do not explicitly consider the effects of spatial scale and population network topology on their results. Here, we examined the effects of spatial scale and population network topology on the outcome of a landscape genetic analysis. Additionally, we tested whether the relevant spatial scale of landscape genetic analysis could be defined by population network topology or by isolation-by-distance (IBD) patterns. A data set of the wetland grasshopper Stethophyma grossum, collected in a fragmented agricultural landscape, was used to analyse population network topology, IBD patterns and dispersal habitats, using least-cost transect analysis. Landscape genetic analyses neglecting spatial scale and population network topology resulted in models with low fits, with which a most likely dispersal habitat could not be identified. In contrast, analyses considering spatial scale and population network topology resulted in high model fits by restricting landscape genetic analysis to smaller scales (0–3 km) and neighbouring populations, as represented by a Gabriel graph. These models also successfully identified a likely dispersal habitat of S. grossum. The above results suggest that spatial scale and potentially population network topology should be more explicitly considered in future landscape genetic analyses.
Data from: Size-selectivity of predation by brown bears depends on the density of their sockeye salmon prey
03-08-2013 03-08-2014
Can variation in prey density drive changes in the intensity or direction of selective predation in natural systems? Despite ample evidence of density-dependent selection, the influence of prey density on predatory selection patterns has seldom been investigated empirically. We used 20 years of field data on brown bears (Ursus arctos) foraging on sockeye salmon (Oncorhynchus nerka) in Alaska, to test the hypothesis that salmon density affects the strength of size-selective predation. Measurements from 41,240 individual salmon were used to calculate variance-standardized selection differentials describing the direction and magnitude of selection. Across the time series, the intensity of predatory selection was inversely correlated with salmon density; greater selection for smaller salmon occurred at low salmon densities as bears’ tendency to kill larger-than-average salmon was magnified. This novel connection between density dependence and selective predation runs contrary to some aspects of optimal foraging theory and differs from many observations of density-dependent selection because (1) the direction of selection remains constant while its magnitude changes as a function of density and (2) stronger selection is observed at low abundance. These findings indicate that sockeye salmon may be subject to fishery-induced size selection from both direct mechanisms and latent effects of altered predatory selection patterns on the spawning grounds, resulting from reduced salmon abundance.
Data from: Cats in the forest: predicting habitat adaptations from humerus morphometry in extant and fossil Felidae (Carnivora)
03-18-2013 05-30-2013
Mammalian carnivores are rarely incorporated in paleoenvironmental reconstructions, largely because of their rarity within the fossil record. However, multivariate statistical modeling can be successfully used to quantify specific anatomical features as environmental predictors. Here we explore morphological variability of the humerus in a closely related group of predators (Felidae) to investigate the relationship between morphometric descriptors and habitat categories. We analyze linear measurements of the humerus in three different morphometric combinations (log-transformed, size-free, and ratio), and explore four distinct ways of categorizing habitat adaptations. Open, Mixed, and Closed categories are defined according to criteria based on traditional descriptions of species, distributions, and biome occupancy. Extensive exploratory work is presented using linear discriminant analyses and several fossils are included to provide paleoecological reconstructions. We found no significant differences in the predictive power of distinct morphometric descriptors or habitat criteria, although sample splitting into small and large cat guilds greatly improves the stability of the models. Significant insights emerge for three long-canine cats: Smilodon populator, Paramachairodus orientalis, and Dinofelis sp. from Olduvai Gorge (East Africa). S. populator and P. orientalis are both predicted to have been closed-habitat adapted taxa. The false “sabertooth” Dinofelis sp. from Olduvai Gorge is predicted to be adapted to mixed habitat. The application of felid humerus ecomorphology to the carnivoran record of Olduvai Gorge shows that the older stratigraphic levels (Bed I, 1.99–1.79 Ma) included a broader range of environments than Beds II or V, where there is an abundance of cats adapted to open environments.
Data from: Distribution of MICB diversity in the Zhejiang Han population: PCR sequence-based typing for exons 2–6 and identification of five novel MICB alleles
04-03-2013 06-12-2013
The polymorphism of major histocompatibility complex class I chain-related gene B (MICB) and variations in MICB alleles in a variety of populations have been characterized using several genotyping approaches. In the present study, a novel polymerase chain reaction sequence-based typing (PCR-SBT) method was established for the genotyping of MICB exons 2–6, and the allelic frequency of MICB in the Zhejiang Han population was investigated. Among 400 unrelated healthy Han individuals from Zhejiang Province, China, a total of 20 MICB alleles were identified, of which MICB*005:02:01, MICB*002:01:01, and MICB*004:01:01 were the most predominant alleles, with frequencies of 0.57375, 0.1225, and 0.08375, respectively. Nine MICB alleles were detected on only one occasion, giving a frequency of 0.00125. Of the 118 distinct MICB ∼ HLA-B haplotypes identified, 42 showed significant linkage disequilibrium (P < 0.05). Haplotypes MICB*005:02:01 ∼ B*46:01, MICB*005:02:01 ∼ B*40:01, and MICB*008 ∼ B*58:01 were the most common haplotypes, with frequencies of 0.0978, 0.0761, and 0.0616, respectively. Five novel alleles, MICB*005:07, MICB*005:08, MICB*027, MICB*028, and MICB*029 were identified. Compared with the MICB*005:02:01 sequence, a G > A substitution was observed at nucleotide position 210 in MICB*005:07, and a 1,134 T > C substitution in MICB*005:08 and an 862 G > A substitution in MICB*027 were detected. In addition, it appears that MICB*028 probably arose from MICB*004:01:01 with an A to G substitution at position 1,147 in exon 6. MICB*029 had a G > T transversion at nucleotide position 730 in exon 4, compared with that of MICB*002:01:01. On the basis of the new PCR-SBT assay, these observed results demonstrated MICB allelic variations in the Zhejiang Han population.
Data from: Population genetic structure, local adaptation, and conservation genetics of Kandelia obovata
03-01-2013 07-15-2013
Topographic changes during the Pleistocene glacial/interglacial cycles affected the distribution of coastline mangroves and influenced their population genetic structure. The submergence of the continental shelf off southeast China during the postglacial age caused coastline expansions and resulted in the colonization of mangroves. Here, we performed multilocus genome scans using amplified fragment-length polymorphisms to explore the effects of topography and natural selection in structuring Kandelia obovata populations. Long-term isolation by the Taiwan Strait since the end of the last glacial maximum, which obstructed gene flow, differentiated the Taiwanese and Chinese populations. Founders that colonized from both outlets of the Taiwan Strait were sourced from the northern South China Sea and the Ryukyus, thereby creating a melting pot in the Taiwan Strait. Inner-strait currents played roles as vectors for propagule dispersal among populations. Upon examination of the allele-frequency distributions of outlier loci, most negative outliers reflected the widespread polymorphisms shared by common ancestors. Furthermore, significant differentiation in the genetic components of positive outliers between this and other populations and the negative correlation with geographic distance suggested the presence of geography- or latitude-independent population divergence. Restored populations were compared with their sources and revealed biased sampling of nursery seedlings, which caused within-population substructures and reduced effective population sizes. This study indicated that multiple factors affect the population structure of the mangroves off southeast China.
Data from: Allometric convergence in savanna trees and implications for plant scaling models in variable ecosystems
03-06-2013 10-22-2015
Theoretical models of allometric scaling provide frameworks for understanding and predicting how and why the morphology and function of organisms vary with scale. It remains unclear, however, if the predictions of ‘universal’ scaling models for vascular plants hold across diverse species in variable environments. Phenomena such as competition and disturbance may drive allometric scaling relationships away from theoretical predictions based on an optimized tree. Here, we use a hierarchical Bayesian approach to calculate tree-specific, species-specific, and ‘global’ (i.e. interspecific) scaling exponents for several allometric relationships using tree- and branch-level data harvested from three savanna sites across a rainfall gradient in Mali, West Africa. We use these exponents to provide a rigorous test of three plant scaling models (Metabolic Scaling Theory (MST), Geometric Similarity, and Stress Similarity) in savanna systems. For the allometric relationships we evaluated (diameter vs. length, aboveground mass, stem mass, and leaf mass) the empirically calculated exponents broadly overlapped among species from diverse environments, except for the scaling exponents for length, which increased with tree cover and density. When we compare empirical scaling exponents to the theoretical predictions from the three models we find MST predictions are most consistent with our observed allometries. In those situations where observations are inconsistent with MST we find that departure from theory corresponds with expected tradeoffs related to disturbance and competitive interactions. We hypothesize savanna trees have greater length-scaling exponents than predicted by MST due to an evolutionary tradeoff between fire escape and optimization of mechanical stability and internal resource transport. Future research on the drivers of systematic allometric variation could reconcile the differences between observed scaling relationships in variable ecosystems and those predicted by ideal models such as MST.