Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: Trans-effects of chromosome aneuploidies on DNA methylation patterns: DNA methylation analysis of Down syndrome in human brain tissues and cells      
availability:
available
aggregation:
instance of dataset
privacy:
not applicable
refinement:
curated
dateReleased:
12-08-2015
ID:
E-GEOD-74486
description:
Background: Trisomy 21 causes Down syndrome (DS), but the mechanisms by which the extra chromosome leads to deficient intellectual and immune function are not well understood. Results: Here, we profile CpG methylation in DS and control cerebral and cerebellar cortex of adults and cerebrum of fetuses. We purify neuronal and non-neuronal nuclei and T-lymphocytes and find biologically relevant genes with DS-specific methylation (DS-DM) in brain cells. Some genes show brain-specific DS-DM, while others show stronger DS-DM in T cells. Both 5-methyl-cytosine and 5-hydroxy-methyl-cytosine contribute to the DS-DM. Thirty percent of genes with DS-DM in adult brain cells also show DS-DM in fetal brains, indicating early onset of these epigenetic changes, and we find early maturation of methylation patterns in DS brain and lymphocytes. Some, but not all, of the DS-DM genes show differential expression. DS-DM preferentially affected CpGs in or near specific transcription factor binding sites, implicating a mechanism involving altered transcription factor binding. Methyl-seq of brain DNA from mouse models with sub-chromosomal duplications mimicking DS reveals partial but significant overlaps with human DS-DM and shows that multiple chromosome 21 genes contribute to the downstream epigenetic effects. Conclusions: These data point to novel biological mechanisms in DS and have general implications for trans effects of chromosomal duplications and aneuploidies on epigenetic patterning. Bisulfite converted DNA from 119 samples from Down syndrome patients and controls were hybridised to the Illumina Infinium 450k Human Methylation Beadchip. In addition, we re-analyzed 6 Down syndrome and 6 control cerebellum DNA samples on the 450K BeadChips using an adaptation of the Illumina probe preparation protocol (TrueMethyl kit; Cambridge Epigenetics, CEGX), in which parallel analyses of bisulfite and oxidative bisulfite DNA for each sample allows assessment of the relative contributions of 5mC and 5hmC to net methylation.
keywords:
methylation profiling by array
format:
HTML
storedIn:
Array Express
qualifier:
not compressed
accessType:
landing page
authorization:
none
authentication:
none
primary:
true
accessURL: https://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-74486
format:
JSON
storedIn:
OmicsDI
qualifier:
not compressed
accessType:
download
authorization:
none
authentication:
none
primary:
false
accessURL: www.omicsdi.org/ws/dataset/arrayexpress-repository/E-GEOD-74486.json
format:
XML
storedIn:
OmicsDI
qualifier:
not compressed
accessType:
download
authorization:
none
authentication:
none
primary:
false
accessURL: http://www.omicsdi.org/ws/dataset/arrayexpress-repository/E-GEOD-74486.xml
ID:
SCR:014747
name:
Omics Discovery Index
abbreviation:
OmicsDI
homePage: http://www.omicsdi.org/

Feedback?

If you are having problems using our tools, or if you would just like to send us some feedback, please post your questions on GitHub.