Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: Phosphatidylinositol 3-Kinase (PI3K) delta blockade increases genomic instability in B cells      
keywords:
Other
ID:
PRJNA311552
description:
Activation-induced cytidine deaminase (AID) is a B-cell specific enzyme that targets immunoglobulin (Ig) genes to initiate class switch recombination (CSR) and somatic hypermutation (SHM). Through off-target activity, however, AID has a much broader impact on genomic instability by initiating oncogenic chromosomal translocations and mutations involved in lymphoma development and progression. AID expression is tightly regulated in B cells and its overexpression leads to enhanced genomic instability and lymphoma formation. The phosphatidylinositol 3-kinase (PI3K) δ pathway plays a key role in AID regulation by suppressing its expression in B cells. Novel drugs for leukemia or lymphoma therapy such as idelalisib, duvelisib or ibrutinib inhibit PI3Kδ activity directly or indirectly through inhibition of the Bruton tyrosine kinase (BTK), thus possibly affecting AID expression and, consequently, genomic stability in B cells. Here we show that treatment of primary mouse B cells with idelalisib or duvelisib, and to a lesser extent ibrutinib, enhanced the expression of AID and increased somatic hypermutation (SHM) and chromosomal translocation frequency to the Igh locus and to several AID off-target sites. These effects were both completely abrogated in AID deficient B cells. PI3Kδ inhibitors or ibrutinib increased the formation of AID-dependent tumors in pristane-treated mice. Consistently, PI3Kδ inhibitors enhanced AID expression and translocation frequency to IgH and AID off-target sites in human chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) cell lines, and patients treated with idelalisib showed increased SHM in AID off-targets. In summary, we show that PI3Kδ or BTK inhibitors increase genomic instability in normal and neoplastic B cells by an AID-dependent mechanism. Since such inhibitors are administered for years to patients, their genotoxic potential should be carefully considered while planning therapeutic protocols. Overall design: We applied a genome-wide translocation technique we previously developed (High-Throughput Genomic Translocation Sequencing approach, HTGTS) to identify translocation partners from DNA double strand breaks (DSBs) introduced into the c-myc locus (Chiarle et al, Cell 2011) in Mouse and Human B cell treated with PI3K inhibitors. We also re-sequenced selected mouse and human genomic regions from template DNA for somatic hypermutation (SHM) analysis in samples treated with PI3K delta inhibitors. We also performed GRO-Seq experiments in activated B cells treated with PI3K delta inhibitors to find correlations between transcription and translocation junction frequency.
accesstypes:
download
landingpage: http://www.ncbi.nlm.nih.gov/bioproject/PRJNA311552
authentication:
none
authorization:
none
ID:
pmid:28199309
abbreviation:
NCBI
homePage: http://www.ncbi.nlm.nih.gov
ID:
SCR:006472
name:
National Center for Biotechnology Information
homePage: http://www.ncbi.nlm.nih.gov/bioproject
ID:
SCR:004801
name:
NCBI BioProject