Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: Transcriptomic analysis of ABA influences on pigments, flavonoids and antioxidant system in tomato fruit ripening      
keywords:
Transcriptome or Gene expression
ID:
PRJNA268123
description:
Purpose: The goals of this study was to provide genome-wide data to investigate the molecular mechanism of ABA regulation in many ripening related biological processes, including fruit color variation, antioxidant capacity, flavonoids biosynthesis and photosynthesis. Methods:By applying the next generation sequencing technology, we conducted a comparative analysis of exogenous ABA and NDGA effects on tomato fruit maturation. Results:The high throughput sequencing results showed that 25728 genes expressed across all three samples, and 10388 of them were identified as significantly differently expressed genes (DEGs). Exogenous ABA was found to enhance the transcription of genes in pigments metabolism, including carotenoids biosynthesis and chlorophyll degradation, whereas NDGA treatment inhibited these progresses. The results also revealed the crucial role of ABA in flavonoids synthesis and regulation of antioxidant system. Intriguingly, we also found that an inhibition of endogenous ABA significantly enhanced the transcriptional abundance of genes involved in fruit photosynthesis. Conclusions:next-generation sequencing enabled us to characterize the transcriptomes of tomato fruit treated with ABA and NDGA. By comparing these transcriptomes with control respectively, we observed that ABA could accelerate fruit maturation by positively regulating many genes related to ripening processes. Our study have turned spotlight on the pathways of fruit pigmentation, including carotenoid biosynthesis and chlorophyll metabolism. Exogenous ABA was able to up-regulate many genes in relation to the carotenoids accumulation and chlorophyll breakdown, thus promoting the color transition of tomato fruit. In addition, ABA has the potential to improve the genes related to antioxidant capacity, such as SODs, CATs, APXs, GSTs, GPXs, TrXs and PrxRs. Besides, the expression changes of genes involved in flavonoids biosynthesis after ABA exposure was striking, suggesting ABA could enhance the defense response by producing more secondary metabolite in tomato fruit. Moreover, the sequencing results also implied high level of ABA could negatively affect photosynthesis of tomato fruit, which needs more investigations to explore the interaction between ABA and photosynthesis in the future. Overall design: Examination of genome-wide gene expression changes of the 9th day tomato fruits treated with ABA, NDGA and CK, stored at 20 oC,90% RH in the dark.
accesstypes:
download
landingpage: http://www.ncbi.nlm.nih.gov/bioproject/PRJNA268123
authentication:
none
authorization:
none
ID:
pmid:26053166
name:
Solanum lycopersicum var. cerasiforme
ncbiID:
ncbitax:195583
abbreviation:
NCBI
homePage: http://www.ncbi.nlm.nih.gov
ID:
SCR:006472
name:
National Center for Biotechnology Information
homePage: http://www.ncbi.nlm.nih.gov/bioproject
ID:
SCR:004801
name:
NCBI BioProject