Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: Differential gene expression between human Cord blood transduced with HPIP-wt, mutant NRPID and control YFP      
keywords:
Transcriptome or Gene expression
ID:
PRJNA121571
description:
Background Homeobox gene associated regulatory networks are among the key determinants of early hematopoietic development. Previously, the ‘hematopoietic PBX interacting protein’ (HPIP) has been identified as a novel interacting partner of the TALE homeodomain protein PBX1, forming a microtubule signalling complex. Expression of HPIP has been associated with increased tumorigenicity of the MCF7 breast cancer cell line. We now demonstrate that HPIP is a novel regulatory protein in human hematopoiesis: constitutive expression of HPIP in human umbilical cord blood derived CD34+ cells increased the absolute number of clonogenic progenitors in liquid expansion culture as well as in methylcellulose assays with a significantly enhanced formation of erythroid colonies compared to the control (p≤0.01, n=6). Limiting dilution LTC-IC assays confirmed the hematopoietic activity of the protein on primitive human progenitor cells with an over 5fold increase in the absolute number of LTC-ICs compared to non-transduced cells (n=8; p<0.05). In vivo HPIP expression induced a significant shift towards myeloid engraftment (n=8;p<0.05) and doubled the proportion of hCD34+CD38+ human cells in transplanted mice (p≤0.05, n=8). Structure – function analyses identified the C - terminal nuclear receptor/PBX interacting domain (NRPID; LXXLL domain) as a critical domain for the hematopoietic activity of HPIP. Gene expression data by microarray and Q-RT-PCR analysis demonstrated that HPIP induced particularly differential expression of genes involved in the MAPK pathway and cytokine-cytokine interaction. Taken together, these data demonstrate that proteins involved in the organization of microtubular signalling complexes such as HPIP can act as regulators of early human hematopoiesis. Overall design: Stable PG13 packaging cell lines were used to perform transductions of human umbilical cord blood derived CD34+ cells. Phoenix amphotropic cells were used for transient transduction of PG13 with wt and ∆NRPID mutant viruses. Both cell lines were cultured in DMEM with 10% fetal bovine serum and plated on corning dishes for transfections and transient transduction ( 2.5 x 106 cells per 10 cm plate) a day prior to the experiment. Transient transductions were performed as described before in literature. Briefly, cells at 2x10e5/mL were prestimulated for 48 hours in Iscove´s IMDM( GIBCO-Invitrogen, Karlsruhe, Germany) containing a serum substitute (BITTM, Stem Cell Technologies), 10-4M β mercaptoethanol (Sigma-Aldrich, Taufkirchen, Germany), supplemented with the following recombinant human cytokines: 100 ng/mL Flt-3 Ligand, 100 ng/mL SF, 20 ng/mL IL-3, 20 ng/mL G-CSF, and 20 ng/mL IL-6 (Immunotools, Friesoythe, Germany). After 48 Hours, cells were resuspended in filtered virus-containing medium (VCM) supplemented with the same five cytokine cocktail and polybrene (5 µg/mL) on tissue culture dishes (Corning). The dishes were pre-loaded with VCM twice, each time for 45 mins. The procedure was repeated for a total of three infections. Fresh RNA was prepared using RNA easy micro kit (Sigma) with ≤ 2x105 retrovirally transduced human cord blood CD34+HPIP-WT-YFP+, CD34+∆NRPID-HPIP-YFP+ or CD34+YFP+ cells. Total RNA was reverse transcribed (Superscript II, Invitrogen) by using oligo (dT) to prime cDNA synthesis. In vitro transcription was performed using a the GeneChip® Two-Cycle cDNA Synthesis Kit, uniquely configured and tested for GeneChip® target labeling. Two cycles of double-stranded cDNA synthesis containing the T7 promoter sequence were performed from 10 to 100 ng of total RNA using this Kit.
accesstypes:
download
landingpage: http://www.ncbi.nlm.nih.gov/bioproject/PRJNA121571
authentication:
none
authorization:
none
dateReleased:
09-30-2010
name:
Homo sapiens
ncbiID:
ncbitax:9606
abbreviation:
NCBI
homePage: http://www.ncbi.nlm.nih.gov
ID:
SCR:006472
name:
National Center for Biotechnology Information
homePage: http://www.ncbi.nlm.nih.gov/bioproject
ID:
SCR:004801
name:
NCBI BioProject