Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: Transcription profiling by array of yeast PUN1 deletion mutants      
dateReleased:
02-17-2010
description:
Yeast filamentous growth is a stress response to conditions of nitrogen deprivation, wherein yeast colonies form pseudohyphal filaments of elongated and connected cells. As proteins mediating adhesion and transport are required for this growth transition, the protein complement at the yeast cell periphery plays a critical and tightly regulated role in enabling pseudohyphal filamentation. To identify proteins differentially abundant at the yeast cell periphery during pseudohyphal growth, we generated quantitative proteomic profiles of plasma membrane protein preparations under conditions of vegetative growth and filamentation. By iTRAQ chemistry and two-dimensional LC-MS/MS, we profiled 2,463 peptides and 356 proteins, from which we identified eleven differentially abundant proteins that localize to the yeast cell periphery. This protein set includes Ylr414cp, herein renamed Pun1p, a previously uncharacterized protein localized to the plasma membrane compartment of Can1 (MCC). Pun1p abundance is increased two-fold under conditions of nitrogen stress, and deletion of PUN1 abolishes filamentous growth in haploids and diploids; pun1D mutants are non-invasive, lack surface-spread filamentation, grow slowly, and exhibit impaired cell adhesion. Conversely, overexpression of PUN1 results in exaggerated cell elongation under conditions of nitrogen stress. PUN1 contributes to yeast nitrogen signaling, as pun1D mutants misregulate amino acid biosynthetic genes during nitrogen deprivation. By chromatin immunoprecipitation and RT-PCR, we find that the filamentous growth factor Mss11p directly binds to the PUN1 promoter and regulates its transcription. In total, this study provides the first profile of protein abundance during pseudohyphal growth, identifying a previously uncharacterized MCC protein required for wild-type nitrogen signaling and filamentous growth. For this study, we constructed a homozygous diploid strain in the filamentous Σ1278b background deleted for PUN1; a wild-type diploid strain of the same background served as the control. Both strains were grown under conditions of low nitrogen, and RNA was extracted from three biological replicates of each strain after identical culturing. The RNA samples were analyzed using affymerix DNA microarrays.
privacy:
not applicable
aggregation:
instance of dataset
ID:
E-GEOD-20351
refinement:
raw
alternateIdentifiers:
20351
keywords:
functional genomics
dateModified:
04-30-2015
availability:
available
types:
gene expression
name:
Saccharomyces cerevisiae
name:
genetic modification design
ID:
A-AFFY-47
name:
Affymetrix GeneChip Yeast Genome 2.0 Array [Yeast_2]
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-20351/E-GEOD-20351.raw.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-20351/E-GEOD-20351.processed.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20351
storedIn:
Gene Expression Omnibus
qualifier:
not compressed
format:
HTML
accessType:
landing page
primary:
true
authentication:
none
authorization:
none
abbreviation:
EBI
homePage: http://www.ebi.ac.uk/
ID:
SCR:004727
name:
European Bioinformatics Institute
homePage: https://www.ebi.ac.uk/arrayexpress/
ID:
SCR:002964
name:
ArrayExpress
Similar Datasets

Feedback?

If you are having problems using our tools, or if you would just like to send us some feedback, please post your questions on GitHub.