Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: Environment-responsive transcription factors bind proto-silencer elements and regulate subtelomeric silencing      
dateReleased:
05-02-2011
description:
Subtelomeric chromatin is subject to evolutionarily conserved complex epigenetic regulation and is implicated in numerous aspects of cellular function including formation of heterochromatin, regulation of different stress response pathways, and control of lifespan. Subtelomeric DNA is characterized by the presence of specific repeated segments that serve to propagate silencing activities or to protect chromosomal regions from spreading epigenetic control. Using condition-specific genome wide chromatin immunoprecipitation and expression data, we show that several yeast transcription factors regulate subtelomeric silencing in response to various environmental stimuli through conditional association with proto-silencing regions called X elements. In this context, some factors control the propagation of silencing toward centromeres in response to stimuli affecting stress responses and metabolism, whereas others appear to influence boundaries of silencing, regulating telomere-proximal genes in Y’ elements. The factors implicated here have previously been shown to control adjacent genes at intrachromosomal positions, suggesting dual functionality of the factors and a possible mechanism of coordinating intrachromosomal gene expression with subtelomeric silencing. These data suggest a fundamental mechanism to coordinate telomere biology related to aging and adaptation with cellular environment and the activities of other cellular processes. These are Chip-CHIP data for myc tagged Oaf1p transcription factor from S. cerevisiae grown in the presence or absence of the fatty acid oleate. ChIP-CHIP analysis was performed to determine the genomic distribution of Oaf1p transcription factor in the BY4742 yeast strain after growth in 0.1% glucose, or in the presence of the fatty acid oleate. Three biological replicates for each growth condition (in the presence of low glucose or 5 h after a shift to medium containing oleate as a carbon source). ChIP samples were amplified by PCR, labelled and hybridized to 50-mer tiling arrays covering both strands of the entire yeast genome at a 64 bp resolution.
privacy:
not applicable
aggregation:
instance of dataset
ID:
E-GEOD-21852
refinement:
raw
alternateIdentifiers:
21852
keywords:
functional genomics
dateModified:
05-02-2014
availability:
available
types:
gene expression
name:
Saccharomyces cerevisiae
ID:
A-GEOD-5683
name:
NimbleGen_S.cerevisiae_tiling_array
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-21852/E-GEOD-21852.raw.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-21852/E-GEOD-21852.processed.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21852
storedIn:
Gene Expression Omnibus
qualifier:
not compressed
format:
HTML
accessType:
landing page
primary:
true
authentication:
none
authorization:
none
abbreviation:
EBI
homePage: http://www.ebi.ac.uk/
ID:
SCR:004727
name:
European Bioinformatics Institute
homePage: https://www.ebi.ac.uk/arrayexpress/
ID:
SCR:002964
name:
ArrayExpress

Feedback?

If you are having problems using our tools, or if you would just like to send us some feedback, please post your questions on GitHub.