Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: Transcriptomic comparison of 5 cell types during lethal and non-lethal influenza infection      
dateReleased:
07-03-2013
description:
Transcriptomic comparison of 5 cell types during lethal and non-lethal influenza infection and further use of these signatures in a top-down systems analysis investigating the relative pathogenic contributions of direct viral damage to lung epithelium vs. dysregulated immunity during lethal influenza infection. For acutely lethal influenza infections, the relative pathogenic contributions of direct viral damage to lung epithelium vs. dysregulated immunity remain unresolved. Here, we take a top-down systems approach to this question. Multigene transcriptional signatures from infected lungs suggested that elevated activation of inflammatory signaling networks distinguished lethal from sublethal infections. Flow cytometry and gene expression analysis involving isolated cell subpopulations from infected lungs showed that neutrophil influx largely accounted for the predictive transcriptional signature. Automated imaging analysis together with these gene expression and flow data identified a chemokine-driven feed-forward circuit involving pro-inflammatory neutrophils potently driven by poorly contained lethal viruses. Consistent with these data, attenuation but not ablation of the neutrophil-driven response increased survival without changing viral spread. These findings establish the primacy of damaging innate inflammation in at least some forms of influenza-induced lethality and provide a roadmap for the systematic dissection of infection-associated pathology. Multiple mice were either sham infected, infected with the seasonal H1N1 influenza A virus TX91 (10^6PFU), or infected with various sublethal or lethal doses of the mouse pathogenic H1N1 strain PR8. Lung tissues were collected at 48h or 72h post infection. 5 different cell types were purified by flow sorting from lungs of individual animals and then processed to yield total RNA that was used for microarray analysis. The dataset contains 75 microarrays covering 25 experimental conditions with 3 biological replicates. This dataset is linked to a dataset containing 138 microarrays of whole lungs covering 20 experimental conditions.
privacy:
not applicable
aggregation:
instance of dataset
ID:
E-GEOD-42639
refinement:
raw
alternateIdentifiers:
42639
keywords:
functional genomics
dateModified:
06-02-2014
availability:
available
types:
gene expression
name:
Mus musculus
ID:
A-MEXP-1175
name:
Illumina MouseWG-6 v2.0 Expression BeadChip
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-42639/E-GEOD-42639.raw.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-42639/E-GEOD-42639.processed.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42639
storedIn:
Gene Expression Omnibus
qualifier:
not compressed
format:
HTML
accessType:
landing page
primary:
true
authentication:
none
authorization:
none
abbreviation:
EBI
homePage: http://www.ebi.ac.uk/
ID:
SCR:004727
name:
European Bioinformatics Institute
homePage: https://www.ebi.ac.uk/arrayexpress/
ID:
SCR:002964
name:
ArrayExpress

Feedback?

If you are having problems using our tools, or if you would just like to send us some feedback, please post your questions on GitHub.