Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: Translational validation of personalized treatment strategy based on genetic characteristics of glioblastoma [xenograft]      
dateReleased:
06-12-2014
description:
Glioblastoma (GBM) heterogeneity in the genomic and phenotypic properties has potentiated personalized approach against specific therapeutic targets of each GBM patient. The Cancer Genome Atlas (TCGA) Research Network has been established the comprehensive genomic abnormalities of GBM, which sub-classified GBMs into 4 different molecular subtypes. The molecular subtypes could be utilized to develop personalized treatment strategy for each subtype. We applied a classifying method, NTP (Nearest Template Prediction) method to determine molecular subtype of each GBM patient and corresponding orthotopic xenograft animal model. The models were derived from GBM cells dissociated from patient's surgical sample. Specific drug candidates for each subtype were selected using an integrated pharmacological network database (PharmDB), which link drugs with subtype specific genes. Treatment effects of the drug candidates were determined by in vitro limiting dilution assay using patient-derived GBM cells primarily cultured from orthotopic xenograft tumors. The consistent identification of molecular subtype by the NTP method was validated using TCGA database. When subtypes were determined by the NTP method, orthotopic xenograft animal models faithfully maintained the molecular subtypes of parental tumors. Subtype specific drugs not only showed significant inhibition effects on the in vitro clonogenicity of patient-derived GBM cells but also synergistically reversed temozolomide resistance of MGMT-unmethylated patient-derived GBM cells. However, inhibitory effects on the clonogenicity were not totally subtype-specific. Personalized treatment approach based on genetic characteristics of each GBM could make better treatment outcomes of GBMs, although more sophisticated classifying techniques and subtype specific drugs need to be further elucidated. Gene expression profiling experiments were conducted for 25 patient-derived xenograft glioblastoma samples using Affymetrix Human Gene 1.0 ST arrays according to manufacturer's protocol.
privacy:
not applicable
aggregation:
instance of dataset
ID:
E-GEOD-58400
refinement:
raw
alternateIdentifiers:
58400
keywords:
functional genomics
dateModified:
06-21-2014
availability:
available
types:
gene expression
name:
Homo sapiens
ID:
A-AFFY-141
name:
Affymetrix GeneChip Human Gene 1.0 ST Array [HuGene-1_0-st-v1]
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-58400/E-GEOD-58400.raw.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-58400/E-GEOD-58400.processed.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58400
storedIn:
Gene Expression Omnibus
qualifier:
not compressed
format:
HTML
accessType:
landing page
primary:
true
authentication:
none
authorization:
none
abbreviation:
EBI
homePage: http://www.ebi.ac.uk/
ID:
SCR:004727
name:
European Bioinformatics Institute
homePage: https://www.ebi.ac.uk/arrayexpress/
ID:
SCR:002964
name:
ArrayExpress