Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: Transcriptome Profiling of Hippocampal CA1 After Early Life Seizure-Induced Preconditioning May Elucidate New Genetic Therapies for Epilepsy      
dateReleased:
02-14-2013
description:
Injury of the CA1 subregion induced by a single injection of kainic acid (1×KA) is attenuated when juvenile animals (P20) have a history of two sustained neonatal seizures on P6 and P9. To identify gene candidates involved in the spatially protective effects produced by early life conditioning seizures, we profiled and compared the transcriptomes of CA1 subregions from control, 1×KA, and 3×KA treated animals. More genes were regulated following 3×KA (9.6%) than after 1×KA (7.1%). Following 1×KA, genes supporting oxidative stress, growth, development, inflammation, and neurotransmission were upregulated (e.g., Cacng1, Nadsyn1, Kcng1, Aven, S100a4, GFAP, Vim, Hrsp12, Grik1). After 3×KA, protective genes were differentially over-expressed (e.g., Cat, Gpx7, GAD1, Hspa12A, Foxn1, adenosine A1 receptor, Ca2+ adaptor and homeostatic proteins, Cacnb4, Atp2b2, anti-apoptotic Bcl-2 gene members, intracellular trafficking protein, Grasp, suppressor of cytokine signaling (Socs3)). Distinct anti-inflammatory interleukins not observed in adult tissues (e.g., IL6 transducer, IL23 and IL33 or their receptors (ILF2)) were also over-expressed. Several transcripts were validated by real-time polymerase chain reaction (QPCR) and immunohistochemistry. QPCR showed that casp 6 was increased after 1×KA but reduced after 3×KA; pro-inflammatory gene cox1 was either upregulated or unchanged after 1×KA but reduced by ~70% after 3×KA. Enhanced GFAP immunostaining following 1×KA was selectively attenuated in the CA1 subregion after 3×KA. The observed differential transcriptional responses may contribute to early life seizure-induced pre-conditioning and neuroprotection by reducing glutamate receptor-mediated Ca2+ permeability of the hippocampus and redirecting inflammatory and apoptotic pathways which could lead to new genetic therapies for epilepsy. The transcriptomes of the hippocampal CA1 region of Sprague Dawley 23-day-old male rats after 1 or 3 seizures induced by kainic acid injection were compared to the corresponding controls (injected with PBS) using Duke 27k oligonucleotide arrays.
privacy:
not applicable
aggregation:
instance of dataset
ID:
E-GEOD-44031
refinement:
raw
alternateIdentifiers:
44031
keywords:
functional genomics
dateModified:
05-13-2014
availability:
available
types:
gene expression
name:
Rattus norvegicus
ID:
A-GEOD-9207
name:
Duke Operon Rat 27k V3.0 printed oligonucleotide array
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-44031/E-GEOD-44031.raw.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-44031/E-GEOD-44031.processed.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE44031
storedIn:
Gene Expression Omnibus
qualifier:
not compressed
format:
HTML
accessType:
landing page
primary:
true
authentication:
none
authorization:
none
abbreviation:
EBI
homePage: http://www.ebi.ac.uk/
ID:
SCR:004727
name:
European Bioinformatics Institute
homePage: https://www.ebi.ac.uk/arrayexpress/
ID:
SCR:002964
name:
ArrayExpress

Feedback?

If you are having problems using our tools, or if you would just like to send us some feedback, please post your questions on GitHub.