Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: CIP: Differential Response to Hydroxyurea and Incidence of Stroke in Sickle Cell Disease      
Identifier:
phs000691.v2.p1
description:
Sickle cell disease (SCD) is a severe debilitating hematological disorder associated with a high degree of morbidity and mortality. There are approximately 200,000 babies born with sickle cell disease each year, with the disease predominately affecting individuals in Africa. The overall global burden of the disease is tremendous, with more than 100,000 patients currently in the US and further millions worldwide. The governing bodies of the World Health Organization have recently adopted a resolution to strengthen the response to sickle disease in all affected countries and there is a definite need for high quality sickle cell disease research that has the potential to improve the treatment and prognosis of patients with this devastating disease. The clinical manifestations of SCD arise from a complex pathophysiology that includes hemolysis, acute vaso-occlusion, endothelial dysfunction, inflammation, and chronic organ damage. While the individual clinical course of this disease is highly variable, many of the associated complications demonstrate some degree of heritability. Intensive research into identifying genetic modifiers that can affect the pathophysiology of SCD has been limited to date and there is an urgent need to improve of our knowledge the molecular mechanisms underlying the clinical complications of SCD. The Sickle cell CIP project is investigating complication of stroke and pharmacogenomics of hydroxyurea response in patients with sickle cell anemia. The major benefit of hydroxyurea comes from its ability to induce fetal hemoglobin (HbF) and higher HbF levels are associated with reduced morbidity and mortality in SCA patients. We will perform whole exome and whole genome sequencing of SCA patients in order to identify genome variants associated with incidences of stroke and HbF response to hydroxyurea.
accesstypes:
download
enclave
landingpage: http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000691.v2.p1
authentication: simpleLogin
none
authorization:
none
duaIndividual
name:
Anemia, Sickle Cell
affiliations:
Baylor College of Medicine, Houston, TX, USA
name:
Richard A. Gibbs, PhD
roles:
Principal Investigator
affiliations:
National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
name:
U54 HG003273
roles:
Funding Source
performedBy:
TitleNameInstitute Principal InvestigatorRichard A. Gibbs, PhDBaylor College of Medicine, Houston, TX, USA Funding SourceU54 HG003273National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
downloadURL: https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page=DUC&view_pdf&stacc=phs000691.v2.p1
Identifier:
phs000691.v2.p1_policy
name:
Data Use Certificate
Identifier:
1
name:
General Research Use
schedulesActivity:
This work was done in the Human Genome Sequencing Center at Baylor College of Medicine in collaboration with Drs. Jonathan Flanagan, Vivien Sheehan and Russell Ware. The work was supported by a grant from NHGRI # U54 HG003273.
alternateIdentifiers:
yes
selectionCriteria:

Inclusion Criteria:
Patients with sickle cell anemia - Age between 3 years and 22 years inclusive - History of hydroxyurea use with evidence of drug related myelosupression, such as an absolute neutrophil count (ANC) of less than 4000/UL. Or patients with sickle cell anemia and a history of overt clinical stroke.

Exclusion Criteria:
Any subject who does not meet the inclusion criteria.

types:
Case-Control
dateReleased:
12-02-2014
version:
phs000691.v2.p1
dateModified:
12-02-2014
abbreviation:
NHGRI
name:
National Human Genome Research Institute
ID:
0
name:
dbGaP

Feedback?

If you are having problems using our tools, or if you would just like to send us some feedback, please post your questions on GitHub.