Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: Increased hemoglobin expression in NASH livers      
availability:
available
aggregation:
instance of dataset
privacy:
not applicable
refinement:
curated
dateReleased:
06-26-2012
ID:
E-GEOD-24807
description:
BACKGROUND & AIMS: Recent studies revealed that hemoglobin is expressed in some non-erythrocytes and it suppresses oxidative stress when overexpressed. Oxidative stress plays a critical role in the pathogenesis of non-alcoholic steatohepatitis (NASH). This study was to investigate whether hemoglobin is expressed in hepatocytes and how it is related to oxidative stress in NASH patients. METHODS: Microarray was performed to identify differentially expressed genes in NASH. Quantitative real time PCR (qRT-PCR) was used to examine gene expression levels. Western blotting and immunofluorescence staining were employed to examine hemoglobin proteins. Flow cytometry was used to measure intracellular oxidative stress. RESULTS: Analysis of microarray gene expression data has revealed a significant increase in the expression of hemoglobin alpha (HBA1) and beta (HBB) in liver biopspies from NASH patients. Increased hemoglobin expression in NASH was validated by qRT-PCR. However, the expression of erythrocyte specific marker genes such as SPTA, SPTB, GYPA, GATA1, and ALAS2 did not change, indicating that increased hemoglobin expression in NASH was not from erythropoiesis, but could result from increased expression in hepatocytes. Immunofluorescence staining demonstrated positive HBA1 and HBB expression in the hepatocytes of NASH livers. Hemoglobin expression was also observed in human hepatocellular carcinoma HepG2 cell line. Furthermore, treatment with hydrogen peroxide, a known oxidative stress inducer, induced a dose dependent increase in HBA1 expression in HepG2 cells. Intriguingly, forced hemoglobin expression suppressed oxidative stress. CONCLUSIONS: Oxidative stress upregulates hemoglobin expression in hepatocytes. Suppression of oxidative stress by hemoglobin could be a mechanism to protect hepatocytes from oxidative damage. These findings suggest that hemoglobin is an inducible antioxidant in hepatocytes in response to increased oxidative stress as found in NASH livers. Twelve biopsy diagnosed NASH patients were included in this study. For control groups, total RNA from 5 different subjects were purchased from ADMET. These subjects are free from liver disease.
keywords:
transcription profiling by array
format:
HTML
storedIn:
Array Express
qualifier:
not compressed
accessType:
landing page
authorization:
none
authentication:
none
primary:
true
accessURL: https://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-24807
format:
JSON
storedIn:
OmicsDI
qualifier:
not compressed
accessType:
download
authorization:
none
authentication:
none
primary:
false
accessURL: www.omicsdi.org/ws/dataset/arrayexpress-repository/E-GEOD-24807.json
format:
XML
storedIn:
OmicsDI
qualifier:
not compressed
accessType:
download
authorization:
none
authentication:
none
primary:
false
accessURL: http://www.omicsdi.org/ws/dataset/arrayexpress-repository/E-GEOD-24807.xml
ID:
SCR:014747
name:
Omics Discovery Index
abbreviation:
OmicsDI
homePage: http://www.omicsdi.org/