Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: Transplant tissue specfic exosome platform for noninvasive monitoring of immunologic rejection [mRNA]      
keywords:
Transcriptome or Gene expression
ID:
PRJNA348763
description:
In transplantation, there is a critical need for non-invasive biomarker platforms for monitoring immunologic rejection. We hypothesized that transplanted tissues release donor specific exosomes into recipient circulation/ bodily fluids, and that the quantitation and profiling of their intra-exosomal cargoes would constitute a novel biomarker platform for monitoring rejection. We tested this hypothesis in a human into mouse xenogeneic islet transplant model, and validated the concept in clinical settings of islet and renal transplantation. In the xenogeneic model, islet transplant exosomes in recipient blood were quantified over long-term follow-up using anti-human leukocyte antigen (HLA) antibody that is only expressed on human islets (p=1.6x10-14). Transplant islet exosomes were purified using anti-HLA antibody conjugated beads and their cargoes contained bona fide islet endocrine hormone markers insulin, glucagon, and somatostatin. Rejection led to significant decrease in transplant islet exosome signal (p=4x10-15), along with distinct changes in its microRNA and proteomic profiles prior to appearance of hyperglycemia. In the clinical settings of islet (n=5) and renal (n=5) transplantation, donor exosomes with respective tissue specificity for islet β cells and renal epithelial cells were reliably characterized in recipient plasma over follow-up (up to 5 years; p=0.0001). Collectively, these findings demonstrate the biomarker potential of transplant exosome characterization for providing a non-invasive window into the conditional state of the transplant tissue. Overall design: We assessed an in vivo read-out of TISE cargo as compared to its transplanted human islet tissue counterpart. Transplant islet exosomes from two independent experiments were analyzed. Long RNA microarray profiling of islet exosomes and islet graft tissue was performed.
accesstypes:
download
landingpage: http://www.ncbi.nlm.nih.gov/bioproject/PRJNA348763
authentication:
none
authorization:
none
name:
Homo sapiens
ncbiID:
ncbitax:9606
abbreviation:
NCBI
homePage: http://www.ncbi.nlm.nih.gov
ID:
SCR:006472
name:
National Center for Biotechnology Information
homePage: http://www.ncbi.nlm.nih.gov/bioproject
ID:
SCR:004801
name:
NCBI BioProject