Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: High-throughput sequencing of small RNAs in Cucurbita maxima      
keywords:
Transcriptome or Gene expression
ID:
PRJNA142847
description:
Small RNAs (21-24 nt) are pivotal regulators of gene expression that guide both transcriptional and post-transcriptional silencing mechanisms in diverse eukaryotes, including most if not all plants. MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are the two major types, both of which have a demonstrated and important role in plant development, stress responses and pathogen resistance. In this work, we used a deep sequencing approach (Sequencing-By-Synthesis, or SBS) to develop sequence resources of small RNAs from Cucurbita maxima tissues (including leaves, flowers and phloem sap). The high depth of the resulting datasets enabled us to examine in detail critical small RNA features as size distribution, tissue-specific regulation and sequence conservation between different organs in this species. We also developed database resources and a dedicated website (http://smallrna.udel.edu/) with computational tools for allowing other users to identify new miRNAs or siRNAs involved in specific regulatory pathways, verify the degree of conservation of these sequences in other plant species and map small RNAs on genes or larger regions of the maize genome under study. Overall design: Small RNA libraries were derived from leaves, flowers and phloem sap of Cucurbita maxima, variety Big Max. Total RNA was isolated using the TriReagent (Molecular Research Center) for leaves and phloem sap and the Plant RNA Purification Reagent (Invitrogen) for flowers, and submitted to Illumina (Hayward, CA, http://www.illumina.com) for small RNA library construction using approaches described in (Lu et al., 2007) with minor modifications. The small RNA libraries were sequenced with the Sequencing-By-Synthesis (SBS) technology by Illumina. PERL scripts were designed to remove the adapter sequences and determine the abundance of each distinct small RNA. We thank Pamela Green for providing the plant material as well as Kan Nobuta and Gayathri Mahalingam for assistance with the computational methods.
accesstypes:
download
landingpage: http://www.ncbi.nlm.nih.gov/bioproject/PRJNA142847
authentication:
none
authorization:
none
dateReleased:
05-10-2011
name:
Cucurbita maxima
ncbiID:
ncbitax:3661
abbreviation:
NCBI
homePage: http://www.ncbi.nlm.nih.gov
ID:
SCR:006472
name:
National Center for Biotechnology Information
homePage: http://www.ncbi.nlm.nih.gov/bioproject
ID:
SCR:004801
name:
NCBI BioProject