Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: Postnatal Growth Restriction and Gene Expression Changes in a Mouse Model of Fetal Alcohol Syndrome (Kidney)      
keywords:
Transcriptome or Gene expression
ID:
PRJNA133229
description:
Growth restriction, craniofacial dysmorphology and central nervous system defects are the main diagnostic features of fetal alcohol syndrome. Studies in humans and mice have reported that the growth restriction can be prenatal and/or postnatal, but the underlying mechanisms remain unknown. We recently described a mouse model of moderate gestational ethanol exposure that produces measurable phenotypes in line with fetal alcohol syndrome, e.g. craniofacial changes and growth restriction in adolescent mice. Here we further characterize the growth restriction phenotype by measuring body weight at gestational day 16.5, cross-fostering from birth to weaning, and extending our observations into adulthood. Furthermore, in an attempt to unravel the molecular events contributing to the growth phenotype, we have compared gene expression patterns in the liver and kidney of non-fostered ethanol-exposed and control mice at postnatal day 28. We find that the ethanol-induced growth phenotype is not detectable prior to birth, but is present at weaning, even in mice that have been cross-fostered to unexposed dams. This suggests a postnatal growth restriction phenotype that is not due to deficient postpartum care by dams that drank ethanol, but rather a physiological result of ethanol exposure in utero. We also find that, despite some catch-up growth after five weeks of age, the effect extends into adulthood, consistent with longitudinal studies in humans. Genome-wide gene expression analysis revealed interesting ethanol-induced changes in the liver, including genes involved in the metabolism of exogenous and endogenous compounds, iron homeostasis and lipid metabolism. Overall design: Gene expression changes in the kidneys of offspring exposed to alcohol in utero compared to controls.
accesstypes:
download
landingpage: http://www.ncbi.nlm.nih.gov/bioproject/PRJNA133229
authentication:
none
authorization:
none
ID:
pmid:20878912
dateReleased:
10-01-2010
name:
Mus musculus
ncbiID:
ncbitax:10090
abbreviation:
NCBI
homePage: http://www.ncbi.nlm.nih.gov
ID:
SCR:006472
name:
National Center for Biotechnology Information
homePage: http://www.ncbi.nlm.nih.gov/bioproject
ID:
SCR:004801
name:
NCBI BioProject