Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: Effect of short- and long-term morphine treatment on gene expression in the hypothalamus and pituitary      
keywords:
Transcriptome or Gene expression
ID:
PRJNA103333
description:
Addictive drugs including opioids activate signal transduction pathways that regulate gene expression in the brain. However, changes in CNS gene expression following morphine exposure are poorly understood. We studied the effect of short- and long-term morphine treatment on gene expression in the hypothalamus and pituitary using genome-wide DNA microarray and real-time reverse transcriptase polymerase chain reaction (RT-PCR) analyses. In the hypothalamus, we found that short-term morphine administration up-regulated (at least 2-fold) 39 genes and down-regulated six genes. Long-term morphine administration up-regulated 35 genes and down-regulated 51 hypothalamic genes. In the pituitary, we found that short-term morphine administration up-regulated (at least 2-fold) 110 genes and down-regulated 29 genes. Long-term morphine administration up-regulated 85 genes and down-regulated 37 pituitary genes. Strikingly, microarray analysis uncovered several genes involved in food intake (neuropeptide Y, agouti-related protein, and cocaine and amphetamine-regulated transcript) whose expression was strongly altered by morphine exposure in either the hypothalamus or pituitary. Subsequent RT-PCR analysis confirmed similar gene regulation of noteworthy genes in these regions. Finally, we found functional correlation between morphine-induced alterations in food intake and regulations of genes involved in this process. Changes in genes related to food intake may uncover new pathways related to some of the physiological effects of opioids. Keywords: Comparative treatment versus placebo Overall design: 8 samples analyzed: 4 from hypothalamus (2 biological replicates and 2 dye swaps) and 4 from pituitary (2 biological replicates and 2 dye swaps) 8 samples analyzed: 4 from hypothalamus short term treatment (2 biological replicates and 2 dye swaps) and 4 hypothalamus long term treatment (2 biological replicates and 2 dye swaps)
accesstypes:
download
landingpage: http://www.ncbi.nlm.nih.gov/bioproject/PRJNA103333
authentication:
none
authorization:
none
ID:
pmid:20144693
dateReleased:
10-01-2008
name:
Mus musculus
ncbiID:
ncbitax:10090
abbreviation:
NCBI
homePage: http://www.ncbi.nlm.nih.gov
ID:
SCR:006472
name:
National Center for Biotechnology Information
homePage: http://www.ncbi.nlm.nih.gov/bioproject
ID:
SCR:004801
name:
NCBI BioProject