Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: Inherent gene signature of stage II and III colorectal cancer leads in individual recurrence      
dateReleased:
07-02-2009
description:
Background & Aims. The current staging system for colorectal cancer (CRC) based on TNM classification allows prediction of potential recurrence. However, it does not necessarily make reliable personalized prediction of prognosis. In this paper we describe combination of clinicopathological data and gene signature of dissected tumor specimen with stage II and III CRC patients would improve the situation.. Methods. A total of 1978 CRC were collected over 5 years, and then 371 stage II and 322 stage III of them with more than 45.9 months records were subjected to clinicopathological feature analyses. Out of this collection, 129 stage II and III CRC cases were selected for analyses of gene expression profiles with resected specimen. The gene signatures were analyzed by repeated random divisions of the samples into training and test sets to extract discriminator genes. After testing the applicability of this discriminator set, it was subjected to validation using a newly obtained set of 69 samples. Results. The pathological factors in solo or in combinations could not make personalized recurrence prediction, except for partial success with stage II patients. The gene signature, on the other hand, was capable of producing a set of discriminator genes, though the accuracy was yet to be improved. We observed that the best result was obtained when discriminators were selected from stage II CRC samples and used for prognosis of stage II CRC. When stage III cases were included in the process of discriminator extraction or in the process to validate samples, the results were poorer. Finally, we examined 31 independent stage II samples with a set of 30 such discriminators and were able to obtain results with 78 % accuracy, 90 % negative predictive value (NPV), and 55% positive predictive value (PPV). Conclusions. Independent clinicopathological variables were not able to predict prognosis of individual patient, unless the factors are combined. On the other hand, gene signatures allowed accurate prediction of prognosis for individuals, especially with stage II CRC, suggesting its potential use for selection of best treatment option for individual patients. The accuracy of discriminator prediction will be further improved when we take the evolution of CRC into consideration. Of 198 samples, 129 represented the discovery phase and 69 represented the validation phase.
privacy:
not applicable
aggregation:
instance of dataset
ID:
E-GEOD-12032
refinement:
raw
alternateIdentifiers:
12032
dateSubmitted:
07-07-2008
keywords:
functional genomics
dateModified:
05-03-2014
creators:
masakazu miyake
availability:
available
types:
gene expression
name:
Homo sapiens
ID:
A-GEOD-1291
name:
Hitachisoft AceGene Human Oligo Chip 30K 1 Chip Version
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-12032/E-GEOD-12032.raw.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-12032/E-GEOD-12032.processed.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE12032
storedIn:
Gene Expression Omnibus
qualifier:
not compressed
format:
HTML
accessType:
landing page
primary:
true
authentication:
none
authorization:
none
abbreviation:
EBI
homePage: http://www.ebi.ac.uk/
ID:
SCR:004727
name:
European Bioinformatics Institute
homePage: https://www.ebi.ac.uk/arrayexpress/
ID:
SCR:002964
name:
ArrayExpress
Similar Datasets

Feedback?

If you are having problems using our tools, or if you would just like to send us some feedback, please post your questions on GitHub.