Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: Examination of DPY-30, DPY-27, SDC-3, DPY-26, MIX-1, SMC-4, ASH-2, RNA Polymerase II binding in wild type and DCC mutant embryos      
dateReleased:
03-01-2011
description:
Here we exploit the essential process of X-chromosome dosage compensation to elucidate basic mechanisms that control the assembly, genome-wide binding, and function of gene regulatory complexes that act over large chromosomal territories. We demonstrate that a subunit of C. elegans MLL/COMPASS, a gene-activation complex, acts within the dosage compensation complex (DCC), a condensin complex, to target the DCC to both X chromosomes of hermaphrodites and thereby reduce chromosome-wide gene expression. The DCC binds to two categories of sites on X: rex sites that recruit the DCC in an autonomous, sequence- dependent manner, and dox sites that reside primarily in promoters of expressed genes and bind the DCC robustly only when attached to X. We find that DCC mutants that abolish rex-site binding do not eliminate dox-site binding, but instead reduce it to the level observed at autosomal binding sites in wild-type animals. Changes in DCC binding to these non-rex sites occur throughout development and correlate with transcriptional activity of adjacent genes. Moreover, autosomal DCC binding is enhanced by rex-site binding in cis in X-autosome fusion chromosomes. Thus, dox and autosomal sites exhibit similar binding properties. Our data support a model for DCC binding in which low-level DCC binding at dox and autosomal sites is dictated by intrinsic properties correlated with high transcriptional activity. Sex-specific DCC recruitment to rex sites then greatly elevates DCC binding to dox sites in cis, which lack intrinsically high DCC affinity on their own. We also show here that the C. elegans DCC achieves dosage compensation through its effects on transcription. ChIP-chip experiments using antibodies against DPY-27, SDC-3, DPY-30, DPY-26, MIX-1, SMC-4, ASH-2 in wild-type embryos. ChIP-chip experiments using antibodies against SDC-3, DPY-27, DPY-30, ASH-2, and IgG in different DCC mutants. ChIP-chip experiments using antibodies against RNA Pol II (hypophosphorylated and S2 and S5) in wild type and sdc-2 partial loss of function mutants.
privacy:
not applicable
aggregation:
instance of dataset
ID:
E-GEOD-25833
refinement:
raw
alternateIdentifiers:
25833
keywords:
functional genomics
dateModified:
05-03-2014
availability:
available
types:
gene expression
name:
Caenorhabditis elegans
ID:
A-GEOD-8134
name:
NimbleGen 071121_Celegans180_ChIP03_design_ID_6737
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-25833/E-GEOD-25833.raw.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-25833/E-GEOD-25833.processed.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25833
storedIn:
Gene Expression Omnibus
qualifier:
not compressed
format:
HTML
accessType:
landing page
primary:
true
authentication:
none
authorization:
none
abbreviation:
EBI
homePage: http://www.ebi.ac.uk/
ID:
SCR:004727
name:
European Bioinformatics Institute
homePage: https://www.ebi.ac.uk/arrayexpress/
ID:
SCR:002964
name:
ArrayExpress

Feedback?

If you are having problems using our tools, or if you would just like to send us some feedback, please post your questions on GitHub.