Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: Impact on Disease Development, Genomic Location and Biological Function of Copy Number Alterations in Non-Small Cell Lung Cancer      
dateReleased:
12-06-2011
description:
Lung cancer, of which more than 80% is non-small cell, is the leading cause of cancer-related death in the United States. Copy number alterations (CNAs) in lung cancer have been shown to be positionally clustered in certain genomic regions. However, it remains unclear whether genes with copy number changes are functionally clustered. Using a dense single nucleotide polymorphism array, we performed genome-wide copy number analyses of a large collection of non-small cell lung tumors (n = 301). We proposed a formal statistical test for CNAs between different groups (e.g., noninvolved lung vs. tumors, early vs. late stage tumors). We also customized the gene set enrichment analysis (GSEA) algorithm to investigate the overrepresentation of genes with CNAs in predefined biological pathways and gene sets (i.e., functional clustering). We found that CNAs events increase substantially from germline, early stage to late stage tumor. In addition to genomic position, CNAs tend to occur away from the gene locations, especially in germline, noninvolved tissue and early stage tumors. Such tendency decreases from germline to early stage and then to late stage tumors, suggesting a relaxation of selection during tumor progression. Furthermore, genes with CNAs in non-small cell lung tumors were enriched in certain gene sets and biological pathways that play crucial roles in oncogenesis and cancer progression, demonstrating the functional aspect of CNAs in the context of biological pathways that were overlooked previously. We conclude that CNAs increase with disease progression and CNAs are both positionally and functionally clustered. The potential functional capabilities acquired via CNAs may be sufficient for normal cells to transform into malignant cells. Copy number analysis was performed on 301 non-small cell lung cancer tumor samples using Affymetrix 250K Nsp GeneChip
privacy:
not applicable
aggregation:
instance of dataset
ID:
E-GEOD-34140
refinement:
raw
alternateIdentifiers:
34140
keywords:
functional genomics
dateModified:
12-12-2011
availability:
available
types:
gene expression
name:
Homo sapiens
ID:
A-AFFY-107
name:
Affymetrix GeneChip Human Mapping 250K Array Nsp [Mapping250K_Nsp]
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-34140/E-GEOD-34140.raw.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-34140/E-GEOD-34140.processed.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE34140
storedIn:
Gene Expression Omnibus
qualifier:
not compressed
format:
HTML
accessType:
landing page
primary:
true
authentication:
none
authorization:
none
abbreviation:
EBI
homePage: http://www.ebi.ac.uk/
ID:
SCR:004727
name:
European Bioinformatics Institute
homePage: https://www.ebi.ac.uk/arrayexpress/
ID:
SCR:002964
name:
ArrayExpress

Feedback?

If you are having problems using our tools, or if you would just like to send us some feedback, please post your questions on GitHub.