Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: Microarray skeletal muscle PPARbeta overexpressing mice      
dateReleased:
12-12-2011
description:
This experiment was conducted to identify target genes of the peroxisome proliferator-activated receptor beta (PPARb) in skeletal muscle of transgenic mice that overexpressed PPARb. The following abstract from the submitted manuscript describes the major findings of this work. The Nuclear Receptor Transcription Factor PPARbeta/delta Programs Muscle Glucose Metabolism. Zhenji Gan, Eileen Burkart-Hartman, Dong-Ho Han, Brian Finck, Teresa C. Leone, John Holloszy, and Daniel P. Kelly. To identify new gene regulatory pathways controlling skeletal muscle energy metabolism, comparative studies were conducted on muscle-specific transgenic mouse lines expressing the nuclear receptors, PPARalpha (MCK-PPARalpha) or PPARbeta/delta (MCK-PPARbeta/delta). MCK-PPARbeta/delta mice are known to have enhanced exercise performance whereas MCK-PPARalpha mice perform at low levels. Transcriptional profiling revealed that the lactate dehydrogenase (Ldh)b/Ldha gene expression ratio is increased in MCK-PPARbeta/delta muscle, an isoenzyme shift that diverts pyruvate into the mitochondrion for the final steps of glucose oxidation. PPARbeta/delta gain- and loss-of-function studies in skeletal myotubes demonstrated that PPARbeta/delta, but not PPARalpha, interacts with the exercise inducible kinase, AMP-activated protein kinase (AMPK), to synergistically activate Ldhb gene transcription by cooperating with myocyte enhancer factor 2A (MEF2A), in a PPARbeta/delta ligand-independent manner. MCK-PPARbeta/delta muscle was shown to have high glycogen stores, increased levels of GLUT4, and augmented capacity for mitochondrial pyruvate oxidation suggesting a broad reprogramming of glucose utilization pathways. Lastly, exercise studies demonstrated that MCK-PPARbeta/delta mice had lower circulating levels of lactate compared to non-transgenic controls, while exhibiting supranormal performance on a high intensity exercise regimen. These results identify a transcriptional regulatory mechanism that increases capacity for muscle glucose utilization in a pattern that resembles the effects of exercise training. Keywords: muscle, exercise, nuclear receptors, glucose metabolism, gene regulation RNA from two wild-type (non-transgenic (NTG)) and two PPARbeta overexpressing (MCK-PPARb) mice was analyzed. Two replicates of each are provided.
privacy:
not applicable
aggregation:
instance of dataset
ID:
E-GEOD-29055
refinement:
raw
alternateIdentifiers:
29055
keywords:
functional genomics
dateModified:
06-26-2012
availability:
available
types:
gene expression
name:
Mus musculus
ID:
A-AFFY-36
name:
Affymetrix GeneChip Mouse Genome 430A 2.0 [Mouse430A_2]
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-29055/E-GEOD-29055.raw.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-29055/E-GEOD-29055.processed.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29055
storedIn:
Gene Expression Omnibus
qualifier:
not compressed
format:
HTML
accessType:
landing page
primary:
true
authentication:
none
authorization:
none
abbreviation:
EBI
homePage: http://www.ebi.ac.uk/
ID:
SCR:004727
name:
European Bioinformatics Institute
homePage: https://www.ebi.ac.uk/arrayexpress/
ID:
SCR:002964
name:
ArrayExpress

Feedback?

If you are having problems using our tools, or if you would just like to send us some feedback, please post your questions on GitHub.