Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: Nf1 deletion and recurrent copy number alterations in mammary tumorigenesis      
dateReleased:
08-21-2012
description:
Breast cancer is the most prevalent cancer in women, and most cases are believed to have a sporadic, rather than heritable basis. Therefore, a major challenge in cancer research is to determine the underlying genomic alterations leading to carcinogenesis and malignancy, and then use this information for personalized therapies. Genomic studies of human cancers that aim to identify causative mutations are complicated by the prevalence of passenger mutations, genetic heterogeneity, and the diversity of breast cancer etiologies and tumor subtypes. Mouse cancer models are powerful for untangling the genomic basis of cancers because genetic and phenotypic variation can be eliminated or controlled. To identify genes contributing to mammary tumorigenesis, we exploited the C3H-Mcm4Chaos3/Chaos3 (“Chaos3”) mouse model that, by virtue of bearing a defective DNA replicative helicase subunit that causes elevated genomic instability (GIN), sustains somatic alterations ultimately causing mammary adenocarcinomas. Genomic analysis of Chaos3 mammary tumors revealed recurrent copy number alterations (CNAs) of specific genomic regions, most notably deletion of the Neurofibromin 1 (Nf1) tumor suppressor gene in all cases. NF1, a negative regulator of RAS, is traditionally recognized for its role in driving the development of neurofibromas in the context of the human disease Neurofibromitosis but not breast cancer. We observed elevated RAS activation and increased sensitivity of both Chaos3 and human Nf1-mutated breast cancer lines to MAPK and/or PI3K/AKT pathway inhibitors. We also found striking overlap between Chaos3 CNAs and human breast cancer CNA data curated in public genomic databases, including Nf1 deletion. Together, our results indicate that spontaneous NF1 loss can drive breast cancer and suggests a potential therapeutic strategy in that subset of patients. reference x sample
privacy:
not applicable
aggregation:
instance of dataset
ID:
E-GEOD-36240
refinement:
raw
alternateIdentifiers:
36240
keywords:
functional genomics
dateModified:
10-18-2016
availability:
available
types:
gene expression
name:
Mus musculus
ID:
A-GEOD-11383
name:
Agi-perou-lab-custom-MM-144K-arrays-BARCODE25503
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-36240/E-GEOD-36240.raw.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-36240/E-GEOD-36240.processed.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE36240
storedIn:
Gene Expression Omnibus
qualifier:
not compressed
format:
HTML
accessType:
landing page
primary:
true
authentication:
none
authorization:
none
abbreviation:
EBI
homePage: http://www.ebi.ac.uk/
ID:
SCR:004727
name:
European Bioinformatics Institute
homePage: https://www.ebi.ac.uk/arrayexpress/
ID:
SCR:002964
name:
ArrayExpress

Feedback?

If you are having problems using our tools, or if you would just like to send us some feedback, please post your questions on GitHub.