Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: HDAC Inhibitors induce tumor cell-selective pro-apoptotic transcriptional responses      
dateReleased:
04-22-2013
description:
The identification of recurrent somatic mutations in genes encoding epigenetic enzymes, coupled with biochemical studies demonstrating aberrant recruitment of epigenetic enzymes such as histone deacetylases (HDACs) and histone methyltransferases (HMTs) to promoter regions through association with oncogenic fusion proteins such as PML-RARĪ± and AML1-ETO has provided a strong rationale for the development compounds that target the epigenome for the treatment of cancer. HDAC inhibitors (HDACi) are potent inducers of tumor cell apoptosis but it remains unclear why tumor cells are selectively sensitive to HDACi-induced cell death. Herein we assessed the biological and molecular responses of normal and transformed cells to the FDA-approved HDACi vorinostat. Both HDACi selectively killed cells of diverse tissue origin that had been transformed through the serial introduction of different oncogenes. Time course microarray expression profiling revealed that normal and transformed cells transcriptionally responded to vorinostat treatment. Over 4200 genes responded differently to vorinostat in normal and transformed cells and gene ontology and pathway analyses identified a tumor-cell-selective pro-apoptotic gene-expression signature that consisted of BCL2 family genes. In particular, HDACi induced tumor cell-selective upregulation of the pro-apoptotic gene BMF and downregulation of the pro-survival gene BCL2A1 encoding BFL-1. Maintenance of BFL-1 levels in transformed cells through forced expression conferred vorinostat resistance indicating that specific and selective engagement of the intrinsic apoptosis pathways underlies the tumor cell-selective apoptotic activities of these agents. The ability of HDACi to affect the growth and survival of tumor cells whilst leaving normal cells relatively unharmed is fundamental to their successful clinical application. This study provides new insight into the transcriptional effects of HDACi in human donor-matched normal and transformed cells, and identifies molecules and pathways that could underpin the tumor-selective cytotoxic activity of these compounds. Whole genome expression profiling was performed for vorinostat-treated samples and control samples (DMSO vehicle control). Fourteen samples were included in this study. Each sample has three biological replicates, making forty-two arrays in total.
privacy:
not applicable
aggregation:
instance of dataset
ID:
E-GEOD-43010
refinement:
raw
alternateIdentifiers:
43010
keywords:
functional genomics
dateModified:
06-02-2014
availability:
available
types:
gene expression
name:
Homo sapiens
ID:
A-AFFY-44
name:
Affymetrix GeneChip Human Genome U133 Plus 2.0 [HG-U133_Plus_2]
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-43010/E-GEOD-43010.raw.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-43010/E-GEOD-43010.processed.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43010
storedIn:
Gene Expression Omnibus
qualifier:
not compressed
format:
HTML
accessType:
landing page
primary:
true
authentication:
none
authorization:
none
abbreviation:
EBI
homePage: http://www.ebi.ac.uk/
ID:
SCR:004727
name:
European Bioinformatics Institute
homePage: https://www.ebi.ac.uk/arrayexpress/
ID:
SCR:002964
name:
ArrayExpress
Similar Datasets

Feedback?

If you are having problems using our tools, or if you would just like to send us some feedback, please post your questions on GitHub.