Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: Density and methylation state of CpG dinucleotides define histone variant specific retention of nucleosomes in mouse spermatozoa      
dateReleased:
06-15-2013
description:
Nucleosomes are the principal packaging units of chromatin and critical for gene regulation and genome stability. In mammals, a subset of nucleosomes fail to be replaced by protamines during spermatogenesis and are retained in mature spermatozoa providing opportunities for paternal epigenetic transmission. In humans, the remaining 10% localize at regulatory elements of genes. To assess evolutionary conservation and to dissect the molecular logic underlying nucleosome retention, we determined the genome wide nucleosome occupancy in mouse spermatozoa that only contain 1% residual histones. In striking contrast to mammalian somatic cells and haploid round spermatids, we observe high enrichment of nucleosomes at CpG-rich sequences throughout the genome, at conserved regulatory sequences as well as at intra- and intergenic regions and repetitive DNA. This preferred occupancy occurs mutually exclusive with DNA methylation both in mouse and human sperm. At unmethylated CpG-rich sequences, residing nucleosomes are largely composed of the H3.3 histone variant, and trimethylated at lysine 4 (H3K4me3). Both canonical H3.1/H3.2 and H3.3 variant histones are present at promoters marked by Polycomb-mediated H3K27me3, which is strongly predictive for gene repression in pre-implantation embryos. Our data indicate important roles of DNA sequence composition, DNA methylation, variant H3.3 and canonical H3.1/H3.2 histones and associated modifications in nucleosome retention versus eviction during the histone-to-protamine remodeling process in elongating spermatids and potentially in epigenetic inheritance by nucleosomes between generations. Identification of histone, histone variant and histone modification states in round spermatids and sperm
privacy:
not applicable
aggregation:
instance of dataset
ID:
E-GEOD-42629
refinement:
raw
alternateIdentifiers:
42629
keywords:
functional genomics
dateModified:
07-04-2013
availability:
available
types:
gene expression
name:
Mus musculus
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-42629/E-GEOD-42629.raw.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-42629/E-GEOD-42629.processed.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42629
storedIn:
Gene Expression Omnibus
qualifier:
not compressed
format:
HTML
accessType:
landing page
primary:
true
authentication:
none
authorization:
none
abbreviation:
EBI
homePage: http://www.ebi.ac.uk/
ID:
SCR:004727
name:
European Bioinformatics Institute
homePage: https://www.ebi.ac.uk/arrayexpress/
ID:
SCR:002964
name:
ArrayExpress
Similar Datasets

Feedback?

If you are having problems using our tools, or if you would just like to send us some feedback, please post your questions on GitHub.