Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: Resistant starch induces catabolic but suppresses immune and cell division pathways and changes the microbiome in proximal colon of male pigs      
dateReleased:
10-18-2013
description:
Consumption of resistant starch (RS) has been associated with various intestinal health benefits, but knowledge on its effects on global gene expression in the colon is limited. The main objective of the current study was to identify genes affected by RS in the proximal colon to infer which biologic pathways were modulated. Ten 17-wk-old male pigs, fitted with a cannula in the proximal colon for repeated collection of tissue biopsy samples and luminal content, were fed a digestible starch (DS) diet or a diet high in RS (34%) for 2 consecutive periods of 14 d in a crossover design. Analysis of the colonic transcriptome profiles revealed that, upon RS feeding, oxidative metabolic pathways, such as the tricarboxylic acid cycle and β-oxidation, were induced, whereas many immune response pathways, including adaptive and innate immune system, as well as cell division were suppressed. The nuclear receptor peroxisome proliferator-activated receptor γ (PPARG) was identified as a potential key upstream regulator. RS significantly (P < 0.05) increased the relative abundance of several butyrate-producing microbial groups, including the butyrate producers Faecalibacterium prausnitzii and Megasphaera elsdenii, and reduced the abundance of potentially pathogenic members of the genus Leptospira and the phylum Proteobacteria. Concentrations in carotid plasma of the 3 main short-chain fatty acids acetate, propionate, and butyrate were significantly higher with RS consumption compared with DS consumption. Overall, this study provides novel insights on effects of RS in proximal colon and contributes to our understanding of a healthy diet. Ten pigs were fitted with a cannula in the proximal colon for repeated collection of tissue biopsies, and were fed a digestible starch or a resistant starch diet for two consecutive periods of 14 days in a crossover design. After each intervention period a colonic biopsy was taken and subjected to gene expression profiling.
privacy:
not applicable
aggregation:
instance of dataset
ID:
E-GEOD-45554
refinement:
raw
alternateIdentifiers:
45554
keywords:
functional genomics
dateModified:
10-28-2013
availability:
available
types:
gene expression
name:
Sus scrofa
ID:
A-GEOD-16493
name:
[PorGene-1_0-st] Porcine Gene 1.0 ST Array [transcript (gene) version]
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-45554/E-GEOD-45554.raw.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-45554/E-GEOD-45554.processed.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45554
storedIn:
Gene Expression Omnibus
qualifier:
not compressed
format:
HTML
accessType:
landing page
primary:
true
authentication:
none
authorization:
none
abbreviation:
EBI
homePage: http://www.ebi.ac.uk/
ID:
SCR:004727
name:
European Bioinformatics Institute
homePage: https://www.ebi.ac.uk/arrayexpress/
ID:
SCR:002964
name:
ArrayExpress

Feedback?

If you are having problems using our tools, or if you would just like to send us some feedback, please post your questions on GitHub.