Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: Chemical map of S. pombe reveals species-specific features in nucleosome positioning      
dateReleased:
11-12-2013
description:
Knowing the exact positions of nucleosomes not only advances our understanding of their role in gene regulation, but also the mechanisms that underlie between-species variation in chromatin structure. We have generated a chemical map of nucleosomes in vivo in Schizosaccharomyces pombe at base pair resolution. This new map reveals that S.pombe genome shares a similar periodic linker length distribution with Saccharomyces cerevisiae, but with major distinctions in nucleosomal/linker DNA sequence features. In S.pombe, A/T rich sequences are enriched in the nucleosome core region, particularly +/-20 bp of dyad, while they are disfavored in S.cerevisiae nucleosomes. The poly (dA-dT) tracts only slightly affect the nucleosome occupancy in S.pombe; and they possess preferential rotational positions within the nucleosome core with significant enrichment in the 10-30 bp region from the dyad for longer tracts. S.pombe does not have well-defined nucleosome free region immediately upstream of most transcription start sites (TSS), instead the -1 nucleosome is positioned with regular distance to the +1 nucleosome, and its occupancy is negatively correlated with gene expression. The nucleosomes around TSS show more pronounced bidirectional phasing when the intergenic distance is relatively short, and the downstream nucleosome positioning is strongly correlated with DNA sequence features. We discovered that heterochromatin regions tend to have sparse nucleosome positioning, mixed with both well-positioned and fuzzy nucleosomes. The S.pombe map suggests that some of nucleosome positioning codes, formerly thought to be intrinsic, may largely depend on species-specific extrinsic factors including linker histone, chromatin remodelers and other DNA-binding proteins. 2 samples were analyzed with high throughput paired-end parallel sequencing. Both samples were created using the same chemical mapping protocol
privacy:
not applicable
aggregation:
instance of dataset
ID:
E-GEOD-46975
refinement:
raw
alternateIdentifiers:
46975
keywords:
functional genomics
dateModified:
06-03-2014
availability:
available
types:
gene expression
name:
Schizosaccharomyces pombe
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-46975/E-GEOD-46975.raw.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-46975/E-GEOD-46975.processed.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE46975
storedIn:
Gene Expression Omnibus
qualifier:
not compressed
format:
HTML
accessType:
landing page
primary:
true
authentication:
none
authorization:
none
abbreviation:
EBI
homePage: http://www.ebi.ac.uk/
ID:
SCR:004727
name:
European Bioinformatics Institute
homePage: https://www.ebi.ac.uk/arrayexpress/
ID:
SCR:002964
name:
ArrayExpress

Feedback?

If you are having problems using our tools, or if you would just like to send us some feedback, please post your questions on GitHub.