Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: Sequencing of milk fat, milk cell, and mammary tissue RNA from rhesus macaques      
dateReleased:
12-12-2013
description:
Studies of normal human mammary gland development and function have mostly relied on cell culture, limited surgical specimens, and rodent models. Although RNA extracted from human milk has been used to assay the mammary transcriptome non-invasively, the transcriptome derived from the milk fat layer has not been compared with the mammary-derived transcriptome nor have sources of RNA been quantified in milk. In this study the effects of milk collection and processing on RNA quality and origin were assessed in humans and rhesus macaques. Total RNA in milk was quantitated in acridine orange-stained milk using an automated whole slide scanner and custom-built Globulator software. Total RNA extracted from milk fat, cells in milk, and mammary biopsies of lactating rhesus macaques were compared using RNA sequencing and analysis. Compared with human milk, milk from macaques contained similar amounts of RNA-containing cytoplasmic crescents, but more cells. Total RNA extracted from milk fractions was also evaluated for factors that affect RNA quality. Degradation of RNA extracted from human milk fat was positively correlated with geographic distance from collection site, storage time, and sample type. There were no differences in RNA degradation in macaque milk collected after 10 min or 4 hr accumulation, suggesting that degradation of RNA extracted from milk fat may not occur in the mammary gland. Using RNA-Seq, RNA extracted from macaque milk fat and cells in milk more accurately represented RNA from mammary epithelial cells (cells that produce milk) than did RNA from mammary tissue. Mammary epithelium-specific transcripts were more abundant in macaque milk fat whereas adipose or stroma-specific transcripts were more abundant in mammary tissue. Functional analyses confirmed the validity of milk as a source of RNA from mammary epithelial cells. Analysis of highly abundant putative microRNAs in macaque milk fat revealed a potentially novel non-coding RNA species that is conserved in humans. RNA extracted from the milk fat during lactation accurately portrayed the RNA profile of milk-producing mammary epithelial cells. However, this sample type clearly requires protocols that minimize RNA degradation. Transcript profiles from milk cells, milk fat, and mammary tissue from 6 lactating rhesus macaques at 30 and 90 days lactation; 34 samples run in triplicate
privacy:
not applicable
aggregation:
instance of dataset
ID:
E-GEOD-49765
refinement:
raw
alternateIdentifiers:
49765
keywords:
functional genomics
dateModified:
06-03-2014
availability:
available
types:
gene expression
name:
Macaca mulatta
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-49765/E-GEOD-49765.raw.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-49765/E-GEOD-49765.processed.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE49765
storedIn:
Gene Expression Omnibus
qualifier:
not compressed
format:
HTML
accessType:
landing page
primary:
true
authentication:
none
authorization:
none
abbreviation:
EBI
homePage: http://www.ebi.ac.uk/
ID:
SCR:004727
name:
European Bioinformatics Institute
homePage: https://www.ebi.ac.uk/arrayexpress/
ID:
SCR:002964
name:
ArrayExpress

Feedback?

If you are having problems using our tools, or if you would just like to send us some feedback, please post your questions on GitHub.