Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: Transcription profiling by high throughput sequencing of Arabidopsis plants prior to stress, during a first stress, and during a third dehydration stress exposure      
dateReleased:
01-01-2014
description:
Arabidopsis plants that have experienced stress from water withdrawal show an improved ability to tolerate subsequent exposures as a ‘memory’ from the previous stress. This physiological stress memory is associated with ‘transcriptional memory’ illustrated by a subset of dehydrations stress responding genes that produce significantly different transcript amounts during repeated dehydration stresses relative to their response in the first. Here we report the genome-wide representation of dehydration stress transcriptional memory genes in A. thaliana. We identify four novel transcription patterns in response to repeated dehydration stress treatments. The nature of the proteins encoded by genes from each type of memory-response pattern is analyzed and the consequences of the genes’ memory behavior are considered in the context of possible biological relevance. The memory behavior of genes co-regulated by the dehydration/ABA and other abiotic stress and hormone responding pathways suggested that the crosstalk at the transcriptional level between them was affected as well. The intensity and the nature of specific biochemical, membrane, chloroplast, and stress response-related interactions during multiple exposures to dehydration stress are different from the responses to a single dehydration stress. The results reveal additional, hitherto unknown, levels of complexity of the plants’ transcriptional behavior when adjusting and adapting to recurring water deficits. For each condition (water, S1, and S3) the transcriptome was sequenced for two replicates. The watered condition is considered the control.
privacy:
not applicable
aggregation:
instance of dataset
ID:
E-GEOD-48235
refinement:
raw
alternateIdentifiers:
48235
keywords:
functional genomics
dateModified:
03-08-2016
availability:
available
types:
gene expression
name:
Arabidopsis thaliana
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-48235/E-GEOD-48235.raw.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-48235/E-GEOD-48235.processed.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48235
storedIn:
Gene Expression Omnibus
qualifier:
not compressed
format:
HTML
accessType:
landing page
primary:
true
authentication:
none
authorization:
none
abbreviation:
EBI
homePage: http://www.ebi.ac.uk/
ID:
SCR:004727
name:
European Bioinformatics Institute
homePage: https://www.ebi.ac.uk/arrayexpress/
ID:
SCR:002964
name:
ArrayExpress