Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: Pesticide Methoxychlor Promotes the Epigenetic Transgenerational Inheritance of Adult-Onset Disease through the Female Germline      
dateReleased:
05-30-2014
description:
Environmental compounds including fungicides, plastics, pesticides, dioxin and hydrocarbons can promote the epigenetic transgenerational inheritance of adult-onset disease in future generation progeny following ancestral exposure during the critical period of fetal gonadal sex determination. This study examined the actions of the pesticide methoxychlor to promote the epigenetic transgenerational inheritance of adult-onset disease and associated differential DNA methylation regions (i.e. epimutations) in sperm. Gestating F0 generation female rats were transiently exposed to methoxychlor during fetal gonadal development (gestation days 8 to 14) and then adult-onset disease was evaluated in adult F1 and F3 (great-grand offspring) generation progeny for control (vehicle exposed) and methoxychlor lineage offspring. There were increases in the incidence of kidney disease, ovary disease, and obesity in the methoxychlor lineage animals. In females and males the incidence of disease increased in both the F1 and the F3 generations and the incidence of multiple disease increased in the F3 generation. There was increased disease incidence in F4 generation reverse outcross (female) offspring indicating disease transmission was primarily transmitted through the female germline. Analysis of the F3 generation sperm epigenome of the methoxychlor lineage males identified differentially DNA methylated regions (DMR) termed epimutations in a genome-wide gene promoters analysis. These epimutations were found to be methoxychlor exposure specific in comparison with other exposure specific sperm epimutation signatures. Observations indicate that the pesticide methoxychlor has the potential to promote the epigenetic transgenerational inheritance of disease and the sperm epimutations appear to provide exposure specific epigenetic biomarkers for transgenerational disease and ancestral environmental exposures. Methylated sperm DNA was isolated from rats ancestrally exposed to methoxychlor. Three independent samples from each treatment group were obtained. Differential DNA methylation between treatment groups was determined using Nimblegen microarrays. Treated samples were paired with control samples and hybridized together on arrays, resulting in three arrays for the treatment.
privacy:
not applicable
aggregation:
instance of dataset
ID:
E-GEOD-58091
refinement:
raw
alternateIdentifiers:
58091
keywords:
functional genomics
dateModified:
06-10-2014
availability:
available
types:
gene expression
name:
Rattus norvegicus
ID:
A-GEOD-18610
name:
NimbleGen Rat CpG Island Plus RefSeq Promoter 720k array [090618_RN34_CpG_Refseq_Prom_MeDIP]
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-58091/E-GEOD-58091.raw.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-58091/E-GEOD-58091.processed.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58091
storedIn:
Gene Expression Omnibus
qualifier:
not compressed
format:
HTML
accessType:
landing page
primary:
true
authentication:
none
authorization:
none
abbreviation:
EBI
homePage: http://www.ebi.ac.uk/
ID:
SCR:004727
name:
European Bioinformatics Institute
homePage: https://www.ebi.ac.uk/arrayexpress/
ID:
SCR:002964
name:
ArrayExpress

Feedback?

If you are having problems using our tools, or if you would just like to send us some feedback, please post your questions on GitHub.