Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: Role of an archaeal PitA transporter in the copper and arsenic resistance of Metallosphaera sedula an extreme thermoacidophile      
dateReleased:
07-10-2014
description:
Thermomacidophilic archaea, such as Metallosphaera sedula, are lithoautotrophs that occupy metal-rich environments. In previous studies, a M. sedula mutant lacking the primary copper efflux transporter, CopA, became copper sensitive. In contrast, the basis for supra-normal copper resistance remained unclear in the spontaneous M. sedula mutant, CuR1. Here, transcriptomic analysis of copper-shocked cultures indicated that CuR1 had a unique regulatory response to metal challenge corresponding to up-regulation of 55 genes. Genome re-sequencing identified 17 confirmed mutations unique to CuR1 that were likely to change gene function. Of these, 12 mapped to genes with annotated function associated with transcription, metabolism or transport. These mutations included 7 non-synonymous substitutions, 4 insertions and 1 deletion. One of the insertion mutations mapped to pseudogene, Msed_1517, and extended its reading frame an additional 209 amino acids. The extended mutant allele was identified as a homolog of Pho4, a family of phosphate symporters that include the bacterial PitA proteins. Orthologs of this allele were apparent in related extremely thermoacidophilic species, suggesting M. sedula was naturally lacking this gene. Phosphate transport studies combined with physiologic analysis demonstrated M. sedula PitA was a low affinity high velocity secondary transporter implicated in copper resistance and arsenate sensitivity. Genetic analysis demonstrated spontaneous arsenate resistant mutants derived from CuR1 all underwent mutation in pitA and non-selectively became copper resistant. Taken together, these results point to archaeal PitA as a key requirement for the increased metal resistance of strain CuR1 and its accelerated capacity for copper bioleaching. The study comprises 5 samples, described in detail below. WT_CuR1: Differential transcriptional response of Metallosphaera sedula DSM 5348, WT, to the supra-normal copper resistant spontaneous Metallosphaera sedula mutant, CuR1 under normal growth conditions. This experiment was done to analyze the differential transcription of WT cells compared with CuR1 cells at mid log phase. WT-15_CuR1-15: Differential transcription of Metallosphaera cells under sub-inhibitory copper challenge (2.0 mM). This experiment was done to analyze the differential transcription of Metallosphaera sedula WT and CuR1 15 minutes post copper challenge. The copper cultures were harvested 15 minutes after the shock. WT-60_CuR1-60: Differential transcription of Metallosphaera cells under sub-inhibitory copper challenge (2.0 mM). This experiment was done to analyze the differential transcription of Metallosphaera sedula WT and CuR1 60 minutes post copper challenge. The copper cultures were harvested 60 minutes after the shock. WT-15_WT-60: Differential transcription of Metallosphaera cells under sub-inhibitory copper challenge (2.0 mM). This experiment was done to analyze the differential transcription of Metallosphaera sedula WT 15 and 60 minutes post copper challenge. The copper cultures were harvested 15 and 60 minutes after the shock, respectively. CuR1-15_CuR1-60: Differential transcription of Metallosphaera cells under sub-inhibitory copper challenge (2.0 mM). This experiment was done to analyze the differential transcription of Metallosphaera sedula CuR1 15 and 60 minutes post copper challenge. The copper cultures were harvested 15 and 60 minutes after the shock, respectively.
privacy:
not applicable
aggregation:
instance of dataset
ID:
E-GEOD-59253
refinement:
raw
alternateIdentifiers:
59253
keywords:
functional genomics
dateModified:
07-14-2014
availability:
available
types:
gene expression
ID:
A-GEOD-6785
name:
NCSU_Metallosphaera sedula_2Karray_version1
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-59253/E-GEOD-59253.raw.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-59253/E-GEOD-59253.processed.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE59253
storedIn:
Gene Expression Omnibus
qualifier:
not compressed
format:
HTML
accessType:
landing page
primary:
true
authentication:
none
authorization:
none
abbreviation:
EBI
homePage: http://www.ebi.ac.uk/
ID:
SCR:004727
name:
European Bioinformatics Institute
homePage: https://www.ebi.ac.uk/arrayexpress/
ID:
SCR:002964
name:
ArrayExpress

Feedback?

If you are having problems using our tools, or if you would just like to send us some feedback, please post your questions on GitHub.