Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: Mutant p53 in fallopian tube epithelium and high-grade serous cancer formation      
dateReleased:
10-25-2014
description:
Ovarian cancer is the fifth leading cause of cancer death among US women. Evidence supports the hypothesis that high-grade serous ovarian cancers (HGSC) may originate in the distal end of the fallopian tube. Although a heterogeneous disease, 96% of HGSC contain mutations in p53. In addition, the “p53 signature”, or overexpression of p53 protein (usually associated with mutation), is a potential precursor lesion of fallopian tube derived HGSC suggesting an essential role for p53 mutation in early serous tumorigenesis. To further clarify p53-mutation dependent effects on cells, murine oviductal epithelial cells (MOE) were stably transfected with a construct encoding for the R273H DNA binding domain mutation in p53, the most common mutation in HGSC. Mutation in p53 was not sufficient to transform MOE cells, but did significantly increase cell migration. A similar p53 mutation in murine ovarian surface epithelium (MOSE), another potential progenitor cell for serous cancer, was not sufficient to transform the cells nor change migration suggesting tissue specific effects of p53 mutation. Microarray data confirmed expression changes in pro-migratory genes in p53R273H MOE compared to parental cells, which could be reversed by suppressing Slug expression. Combining p53R273H with KRASG12V activation caused transformation of MOE into high-grade sarcomatoid carcinoma when xenografted into nude mice. Elucidating the specific role of p53R273H in the fallopian tube will improve understanding of changes at the earliest stage of transformation and could help develop chemopreventative strategies to prevent the accumulation of additional mutations and reverse progression of the “p53 signature” thereby, improving survival rates. We used a microarray to determine global changes in gene expression as a result of the p53 mutation specifically in mouse oviductal epithelium. Murine oviductal cells (MOE) were obtained from Dr. Barbara Vanderhyden at the University of Ottawa. Stable cell lines were generated using antibiotic resistant plasmids containing p53 R273H (Addgene, plasmid: 16439, donated by Dr. Vogelstein, Johns Hopkins University school of Medicine, Baltimore, MD) or pCMV-Neo (Origene PCMV6XL4, Rockville, MD). Total RNA was extracted from cell pellets collected from consecutive passages.
privacy:
not applicable
aggregation:
instance of dataset
ID:
E-GEOD-62694
refinement:
raw
alternateIdentifiers:
62694
keywords:
functional genomics
dateModified:
11-01-2014
availability:
available
types:
gene expression
name:
Mus musculus
ID:
A-GEOD-16570
name:
[MoGene-2_0-st] Affymetrix Mouse Gene 2.0 ST Array [transcript (gene) version]
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-62694/E-GEOD-62694.raw.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-62694/E-GEOD-62694.processed.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62694
storedIn:
Gene Expression Omnibus
qualifier:
not compressed
format:
HTML
accessType:
landing page
primary:
true
authentication:
none
authorization:
none
abbreviation:
EBI
homePage: http://www.ebi.ac.uk/
ID:
SCR:004727
name:
European Bioinformatics Institute
homePage: https://www.ebi.ac.uk/arrayexpress/
ID:
SCR:002964
name:
ArrayExpress