Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: Genome-wide ChIP sequence analysis of KSHV-infected primary effusion lymphoma (PEL) cell line BCBL-1 and human umbilical vein endothelial TIVE-LTC cells      
dateReleased:
10-27-2014
description:
Kaposi’s sarcoma-associated herpesvirus (KSHV) is a g-herpesvirus which persists as circular extrachromasomal DNA in the nucleus during latent infection. During latency a limited number of viral proteins are expressed, including LANA (latency-associated nuclear antigen). LANA is a multi-functional protein known to interact with transcriptional regulators and chromatin remodelers, and to regulate the LANA and RTA promoters. We hypothesized that LANA may contribute to the establishment of latency through controlling chromatinization and histone modification of KSHV episomes. We performed ChIP-seq analysis and correlated H3K4me3, H3K27me3, polII, and LANA occupancy of the KSHV genome at nucleotide resolution. Epigenetic marks were analyzed in BCBL-1 lymphoid cells and in telomerase-immortalized vein endothelial TIVE-LTC cells. We found that the transcription active mark H3K4me3, but not silencing mark H3K27me3, was enriched at KSHV regions where LANA is bound. Co-occupancy of LANA and H3K4 was also detected on 167 host genes, of which 89 are actively transcribed. By comparing LANA occupancy with the profiling of 43 transcription factors from ENCODE, a subset of transcription factors was enriched at regions where LANA is bound, including znf143, CTCF, and Stat1. These results indicate that LANA also plays a role in modulating expression of host genes. Co-immunoprecipitation of LANA with the H3K4 methyltransferase hSET1 suggests that LANA recruits hSET1 to specific loci on the viral genome, leading to H3K4 methylation and ensuring transcription of latency-associated genes. Host gene expression may be regulated by the same mechanism. LANA binding was correlated with the distribution in the latent KSHV genome of the transcription active histone modification H3K4me3, the silencing mark H3K27me3, and RNA polymerase II, using cells of lymphoid and endothelial origin. A similar analysis was done for the human genome. Biological replicates (BR) and technical replicates (TR) were included.
privacy:
not applicable
aggregation:
instance of dataset
ID:
E-GEOD-52421
refinement:
raw
alternateIdentifiers:
52421
keywords:
functional genomics
dateModified:
12-10-2014
availability:
available
types:
gene expression
name:
Homo sapiens
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-52421/E-GEOD-52421.raw.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-52421/E-GEOD-52421.processed.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52421
storedIn:
Gene Expression Omnibus
qualifier:
not compressed
format:
HTML
accessType:
landing page
primary:
true
authentication:
none
authorization:
none
abbreviation:
EBI
homePage: http://www.ebi.ac.uk/
ID:
SCR:004727
name:
European Bioinformatics Institute
homePage: https://www.ebi.ac.uk/arrayexpress/
ID:
SCR:002964
name:
ArrayExpress

Feedback?

If you are having problems using our tools, or if you would just like to send us some feedback, please post your questions on GitHub.