Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: Gene expression profile of hemocytes from Drosophila melanogaster on lipid-enriched diet compared to normal diet      
dateReleased:
01-30-2015
description:
Long-term consumption of fatty foods is associated with obesity, macrophage activation and inflammation, metabolic imbalance, and a reduced lifespan. We took advantage of Drosophila genetics to investigate the role of macrophages and the pathway(s) that govern their response to dietary stress. Flies fed a lipid-rich diet presented with increased fat storage, systemic JAK-STAT activation, reduced insulin sensitivity and hyperglycaemia, and a shorter lifespan. Drosophila macrophages scavenged lipids and produced the type 1 cytokine upd3, in a scavenger-receptor (croquemort) and JNK-dependent manner. Genetic depletion of macrophages, or macrophage-specific silencing of upd3 decreased JAK-STAT activation and rescued insulin sensitivity and the lifespan of Drosophila, but did not decrease fat storage. NF-κB signalling made no contribution to the phenotype observed. These results identify an evolutionarily conserved ‘scavenger receptor-JNK-Type 1 cytokine’ cassette in macrophages, which controls glucose metabolism and reduces lifespan in Drosophila maintained on a lipid-rich diet via activation of the JAK-STAT pathway Long-term consumption of fatty foods is associated with obesity, macrophage activation and inflammation, metabolic imbalance, and a reduced lifespan. We took advantage of Drosophila genetics to investigate the role of macrophages and the pathway(s) that govern their response to dietary stress. Flies fed a lipid-rich diet presented with increased fat storage, systemic JAK-STAT activation, reduced insulin sensitivity and hyperglycaemia, and a shorter lifespan. Drosophila macrophages scavenged lipids and produced the type 1 cytokine upd3, in a scavenger-receptor (croquemort) and JNK-dependent manner. Genetic depletion of macrophages, or macrophage-specific silencing of upd3 decreased JAK-STAT activation and rescued insulin sensitivity and the lifespan of Drosophila, but did not decrease fat storage. NF-κB signalling made no contribution to the phenotype observed. These results identify an evolutionarily conserved ‘scavenger receptor-JNK-Type 1 cytokine’ cassette in macrophages, which controls glucose metabolism and reduces lifespan in Drosophila maintained on a lipid-rich diet via activation of the JAK-STAT pathway 5 biological samples were FACS-sorted from different batches of Drosophila melanogaster males after 30 days on 15% lipid enriched diet (n=5) and control diet (n=5)
privacy:
not applicable
aggregation:
instance of dataset
ID:
E-GEOD-63254
refinement:
raw
alternateIdentifiers:
63254
keywords:
functional genomics
dateModified:
02-08-2015
availability:
available
types:
gene expression
name:
Drosophila melanogaster
ID:
A-GEOD-19404
name:
Agilent-068787 D. melanogaster Oligo Microarray 8x60K v1
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-63254/E-GEOD-63254.raw.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-63254/E-GEOD-63254.processed.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63254
storedIn:
Gene Expression Omnibus
qualifier:
not compressed
format:
HTML
accessType:
landing page
primary:
true
authentication:
none
authorization:
none
abbreviation:
EBI
homePage: http://www.ebi.ac.uk/
ID:
SCR:004727
name:
European Bioinformatics Institute
homePage: https://www.ebi.ac.uk/arrayexpress/
ID:
SCR:002964
name:
ArrayExpress
Similar Datasets

Feedback?

If you are having problems using our tools, or if you would just like to send us some feedback, please post your questions on GitHub.