Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: Age- and Obesity Induced Decline of Brown Fat Function as Consequence of Impaired miR-328 Dependent Silencing of Bace1      
dateReleased:
06-17-2015
description:
Activated brown adipose tissue contributes to control of energy and glucose homeostasis in rodents and humans. Defining cell-autonomous processes underlying BAT differentiation and activation may thus reveal novel therapeutic targets for obesity and type 2 diabetes mellitus intervention. Here we show that ageing- and obesity-associated demises in BAT function coincide with down-regulation of mature microRNAs in BAT in the presence of reduced expression of the critical microRNA processing enzyme Dicer1. To mimic this partial down-regulation of microRNA processing in obesity and ageing, we inactivated one allele of Dicer1 selectively in BAT of mice. BAT- restricted heterozygosity of Dicer1 caused glucose intolerance in lean mice and aggravated diet-induced-obesity (DIO)-evoked deterioration of glucose homeostasis. Using combinatorial analyses of altered microRNA-expression in BAT during in vitro preadipocyte commitment and mouse models of progeria, longevity and DIO, we identified 23 microRNAs dysregulated among these conditions. Of these, we identified miR-328 as a novel regulator of BAT differentiation. miR-328 over-expression promotes BAT-differentiation and impairs muscle progenitor commitment, while reducing miR-328 expression blocks BAT specification. We validated the ß-Secretase Bace1 as a target of miR-328, which is consequently over-expressed in BAT of obese and premature ageing mice. Reducing Bace1 expression enhances brown adipocyte, while impairing myogenic differentiation in vitro. In vivo small-molecule Bace1 inhibition in obese mice delayed DIO-induced weight gain, ameliorated obesity-associated deterioration of glucose metabolism and improved insulin sensitivity. Collectively, these experiments reveal reduced Dicer1-miR-328-Bace1 axis in presence of generalized impairment of microRNA processing in ageing and obesity as a novel determinant of ageing- and obesity-associated decline in BAT function. This may define in vivo Bace1-inhibition as an innovative therapeutic approach to not only target age-related neurodegenerative diseases but at the same time improving age-related impairment of BAT-function and metabolism. C57BL/6 mice ( 4 weeks of age) were treated with a calory-rich, high-sugar high-fat diet (HFD) for a course of 4 weeks. Then groups were stratified and one group continued to receive HFD (BAT13-15) or HFD supplemented with an experimental small-molecule Bace 1 inhibitor (BAT17, 33, 35).
privacy:
not applicable
aggregation:
instance of dataset
ID:
E-GEOD-69913
refinement:
raw
alternateIdentifiers:
69913
keywords:
functional genomics
dateModified:
06-20-2015
availability:
available
types:
gene expression
name:
Mus musculus
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-69913/E-GEOD-69913.raw.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-69913/E-GEOD-69913.processed.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE69913
storedIn:
Gene Expression Omnibus
qualifier:
not compressed
format:
HTML
accessType:
landing page
primary:
true
authentication:
none
authorization:
none
abbreviation:
EBI
homePage: http://www.ebi.ac.uk/
ID:
SCR:004727
name:
European Bioinformatics Institute
homePage: https://www.ebi.ac.uk/arrayexpress/
ID:
SCR:002964
name:
ArrayExpress

Feedback?

If you are having problems using our tools, or if you would just like to send us some feedback, please post your questions on GitHub.