Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: Transcriptome profile analysis of cell proliferation molecular processes during multicellular trichome formation induced by tomato Wov gene in tobacco      
dateReleased:
08-25-2015
description:
Purpose: Trichomes, developing from the epidermis of nearly all terrestrial plants, provide good structural resistance against insect herbivores and an excellent model for studying the molecular mechanisms underlying cell fate determination. Regulation of trichomes in Rosids has been well characterized. However, little is known about the cell proliferation molecular processes during multicellular trichome formation in Asterids. Methods: The transcriptomes of between Wov transgenic and wild-type tobacco by RNA-seq analysis were evaluated using the Illumina HiSeq™ 2000 sequencing platform. Raw sequences were filtered and the resulting sets of clean reads were used for the following analysis by Tophat and DEGseq software. qRT–PCR validation was performed using SYBR Green assays. Results: In this study, we identified two point mutations in a novel allele (Wov) at Wo locus. Ectopic expression of Wov in tobacco and potato induces much more trichome formation than wild type. To gain new insights into the underlying mechanisms during the processes of these trichomes formation, we compared the gene expression profiles between Wov transgenic and wild-type tobacco by RNA-seq analysis. A total of 544 co-DEGs were detected between transgenic and wild-type tobacco. Functional assignments of the co-DEGs indicated that 33 reliable pathways are altered in transgenic tobacco plants. The most noticeable pathways are fatty acid metabolism, amino acid biosynthesis and metabolism, and plant hormone signal transduction. Results suggest that these enhanced processes are critical for the cell proliferation during multicellular trichome formation in transgenic plants. In addition, the transcriptional levels of homologues of trichome regulators in Rosids were not significantly changed, whereas homologues of genes (Wo and SlCycB2) in Asterids were significantly upregulated in Wov transgenic tobacco plants. Conclusions: This study presents a global picture of the gene expression changes induced by Wov- gene in tobacco. And the results provided us new insight into the molecular processes controlling multicellular formation in tobacco. Furthermore, we inferred that trichomes in solanaceous species might share a common network. The transcriptomes of between Wov transgenic and wild-type tobacco by RNA-seq analysis were evaluated, in duplicate, using the Illumina sequencing platform.
privacy:
not applicable
aggregation:
instance of dataset
ID:
E-GEOD-72310
refinement:
raw
alternateIdentifiers:
72310
keywords:
functional genomics
dateModified:
08-29-2015
availability:
available
types:
gene expression
name:
Nicotiana tabacum
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-72310/E-GEOD-72310.raw.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-72310/E-GEOD-72310.processed.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72310
storedIn:
Gene Expression Omnibus
qualifier:
not compressed
format:
HTML
accessType:
landing page
primary:
true
authentication:
none
authorization:
none
abbreviation:
EBI
homePage: http://www.ebi.ac.uk/
ID:
SCR:004727
name:
European Bioinformatics Institute
homePage: https://www.ebi.ac.uk/arrayexpress/
ID:
SCR:002964
name:
ArrayExpress

Feedback?

If you are having problems using our tools, or if you would just like to send us some feedback, please post your questions on GitHub.