Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: Functional Evidence Implicating Chromosome 7q22 Haploinsufficiency in Myelodysplastic Syndrome Pathogenesis      
dateReleased:
09-09-2015
description:
Purpose: 5A3+/del mice, which have a heterozygous germ line deletion of a 2-Mb interval of chromosome band 5A3 syntenic to a commonly deleted segment of human 7q22, exhibit hematopoietic stem cell (HSC) abnormalities that may contribute to myelodysplastic syndrome (MDS) pathogenesis. These defects are cell autonomous. The goal of this study is to compare transcriptome profiling (RNA-seq) data obtained from HSC and multipotent progenitors (MPP) isolated from 5A3+/del mice and their wildtype littermates, in order to identify differentially expressed genes and pathways that may contribute to the phenotype. Methods: Total RNA was isolated from CD150hi-HSC, CD150lo-HSC and CD150neg-MPP from wildtype and 5A3+/del mice. 10ng of total RNA was converted into double-stranded cDNA using the Ovation RNA Amplification System V2 (NuGen, CA), and the amplified cDNA products were then used to generate RNA-seq libraries using the TruSeq RNA Sample Preparation Kit v2 reagents (Illumina, CA) with 10 PCR amplification cycles. Library quality and quantity were assessed by the Agilent DNA1000 Chip (Agilent, CA) and qPCR (Kappa Biosystems Inc, MA). 10 pM of each library was sequenced using Illumina SBS chemistry at 2 x 100 bp reads on the HiSeq2000 (Illumina®, CA). The RNA-Seq paired-end reads were mapped to the mouse mm9 genome using an in-house mapping and quality assessment pipeline. The expression of each gene was estimated by the mean coverage of the highest-covered coding exon. Genes with low expression level (<10) across all samples were filtered out, followed by quantile normalization. Differential expression analysis was performed using limma with estimation of false-discovery rate. Gene Set Enrichment Analysis was used to assess pathway enrichment. Results:Transcriptome (RNA-Seq) and Taqman quantitative real-time PCR analyses revealed a ~50% reduction in the expression of multiple genes and of the long intergenic non-coding RNA 503142E22Rik within the 5A3 interval in mutant HSC and MPP. Gene Set Enrichment Analysis (GSEA) of the RNA-Seq data from 5A3+/del HSCs further demonstrated reduced expression of multiple gene sets related to oxidative phosphorylation (OXPHOS) that are similarly down-regulated in the early stages of human therapy-induced MDS and AML. Conclusions: Our study revealed that genes involved in OXPHOS were down-regulated in 5A3+/del HSC, and this finding provided novel insights into the impact of chromosome 7 deletions on the pathogenesis of MDS. Transcriptome profiling (RNA-seq) data of HSC and MPP isolated from 5A3+/del mice and their wildtype littermates were generated by sequencing, in quintuplicate, using Illumina SBS chemistry at 2 x 100 bp reads on the HiSeq2000 (Illumina®, CA)
privacy:
not applicable
aggregation:
instance of dataset
ID:
E-GEOD-72811
refinement:
raw
alternateIdentifiers:
72811
keywords:
functional genomics
dateModified:
09-12-2015
availability:
available
types:
gene expression
name:
Mus musculus
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-72811/E-GEOD-72811.raw.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-72811/E-GEOD-72811.processed.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72811
storedIn:
Gene Expression Omnibus
qualifier:
not compressed
format:
HTML
accessType:
landing page
primary:
true
authentication:
none
authorization:
none
abbreviation:
EBI
homePage: http://www.ebi.ac.uk/
ID:
SCR:004727
name:
European Bioinformatics Institute
homePage: https://www.ebi.ac.uk/arrayexpress/
ID:
SCR:002964
name:
ArrayExpress

Feedback?

If you are having problems using our tools, or if you would just like to send us some feedback, please post your questions on GitHub.