Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: Next Generation Sequencing Facilitates Comparisons of Control and Schizophrenia-Patient derived hiPSC-derived NPCs      
dateReleased:
03-14-2016
description:
Cell-based models of many neurological and psychiatric diseases, established by reprogramming patient somatic cells into human induced pluripotent stem cells (hiPSCs), have now been reported. While numerous reports have demonstrated that neuronal cells differentiated from hiPSCs are electrophysiologically active mature neurons, the “age” of these cells relative to cells in the human brain remains unresolved. Comparisons of gene expression profiles of hiPSC-derived neural progenitor cells (NPCs) and neurons to the Allen BrainSpan Atlas indicate that hiPSC neural cells most resemble first trimester neural tissue. Consequently, we posit that hiPSC-derived neural cells may most accurately be used to model the early developmental defects that contribute to disease predisposition rather than the late features of the disease. Though the characteristic symptoms of schizophrenia SZ generally appear late in adolescence, it is now thought to be a neurodevelopmental condition, often predated by a prodromal period that can appear in early childhood. Postmortem studies of SZ brain tissue typically describe defects in mature neurons, such as reduced neuronal size and spine density in the prefrontal cortex and hippocampus, but abnormalities of neuronal organization, particularly in the cortex, have also been reported. We postulated that defects in cortical organization in SZ might result from abnormal migration of neural cells. To test this hypothesis, we directly reprogrammed fibroblasts from SZ patients into hiPSCs and subsequently differentiated these disorder-specific hiPSCs into NPCs. SZ hiPSC differentiated into forebrain NPCs have altered expression of a number of cellular adhesion genes and WNT signaling. Methods: We compared global transcription of forebrain NPCs from six control and four SZ patients by RNAseq. Results: Multi-dimensional scaling (MDS) resolved most SZ and control hiPSC NPC samples; 848 genes were significantly differentially expressed (FDR<0.01) Conclusions: The WNT signaling pathway was enriched 2-fold (fisher exact test p-value = 0.031). 1-2 independent differentiations (biological replicates) for each of four control and four schizophrenia patients were analyzed; samples were generated in parallel to neuron RNAseq data.
privacy:
not applicable
aggregation:
instance of dataset
ID:
E-GEOD-63738
refinement:
raw
alternateIdentifiers:
63738
keywords:
functional genomics
dateModified:
03-19-2016
availability:
available
types:
gene expression
name:
Homo sapiens
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-63738/E-GEOD-63738.raw.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-63738/E-GEOD-63738.processed.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63738
storedIn:
Gene Expression Omnibus
qualifier:
not compressed
format:
HTML
accessType:
landing page
primary:
true
authentication:
none
authorization:
none
abbreviation:
EBI
homePage: http://www.ebi.ac.uk/
ID:
SCR:004727
name:
European Bioinformatics Institute
homePage: https://www.ebi.ac.uk/arrayexpress/
ID:
SCR:002964
name:
ArrayExpress

Feedback?

If you are having problems using our tools, or if you would just like to send us some feedback, please post your questions on GitHub.