Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: Metagenomic analysis revealed higher microbial and functional gene diversities in deep landfill      
dateReleased:
06-15-2016
description:
Waste decomposition in landfills is a complex and microbe-mediated process. Understanding the microbial community composition and structure is critical for accelerating decomposition and reducing adverse impact on the environment. Here, we examined the microbial communities along with landfill depth and age (LDA) in a sanitary landfill in Beijing, China using 16s rRNA Illumina sequencing and GeoChip 4.6. We found that Clostridiales and Methanofollis were the predominant bacteria and archaea in the present landfill, respectively. Interestingly, in contrast with the decreasing trend of microbial diversity in soil, both phylogenetic and functional diversities were higher in deeper and older refuse in the landfill. Phylogenetic compositions were obviously different in the refuse with the same LDA and such difference is mainly attributed to the heterogeneity of refuse instead of random process. Nevertheless, functional structures were similar within the same LDA, indicating that microbial community assembly in the landfill may be better reflected by functional genes rather than phylogenetic identity. Mantel test and canonical correspondence analysis suggested that environmental variables had significant impacts on both phylogenetic composition and functional structure. Higher stress genes, genes for degrading toxic substances and endemic genes in deeper and older refuse indicated that they were needed for the microorganisms to survive in the more severe environments. This study suggests that landfills are a repository of stress-resistant and contaminant-degrading microorganisms, which can be used for accelerating landfill stabilization and enhancing in situ degradation. Fifteen refuse samples with five landfill depths and ages (6m/2a, 12m/4a, 18m/6a, 24m/8a and 30m/10a) were collected from a sanitary landfill in Beijing, China. Three replicates in every landfill depth and age
privacy:
not applicable
aggregation:
instance of dataset
ID:
E-GEOD-68712
refinement:
raw
alternateIdentifiers:
68712
keywords:
functional genomics
dateModified:
06-17-2016
availability:
available
types:
gene expression
ID:
A-GEOD-20175
name:
GeoChip 4.6
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-68712/E-GEOD-68712.raw.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-68712/E-GEOD-68712.processed.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE68712
storedIn:
Gene Expression Omnibus
qualifier:
not compressed
format:
HTML
accessType:
landing page
primary:
true
authentication:
none
authorization:
none
abbreviation:
EBI
homePage: http://www.ebi.ac.uk/
ID:
SCR:004727
name:
European Bioinformatics Institute
homePage: https://www.ebi.ac.uk/arrayexpress/
ID:
SCR:002964
name:
ArrayExpress

Feedback?

If you are having problems using our tools, or if you would just like to send us some feedback, please post your questions on GitHub.