Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: G-quadruplex structures mark human regulatory chromatin      
dateReleased:
08-05-2016
description:
DNA secondary structures are important for fundamental genome functions such as transcription and replication1. The G-quadruplex (G4) structural motif has been linked to gene regulation2,3 and genome instability4,5 and may be important to cancer development and other diseases6-8. Recently, ~700,000 discrete G4s have been observed in naked human single-stranded genomic DNA using G4-seq, a high-throughput sequencing technique that detects structural features in vitro.9 It is of vital importance to investigate G4 structures within an endogenous chromatin context, which until now remained elusive10,11. Herein, we address this via the development of G4 ChIP-seq, an antibody-based G4 chromatin immunoprecipitation and high-throughput sequencing approach. We identified ~10,000 endogenous G4 structures and show that G4s are predominantly seen in regulatory, nucleosome-depleted, chromatin regions. G4s were enriched in the promoters and 5’UTR regions of highly transcribed genes, particularly in genes related to cancer and in somatic copy number amplifications, such as MYC. Reorganization of the chromatin landscape using a histone deacetylase inhibitor, resulted in de novo G4 formation in new and more prominent regulatory, nucleosome-depleted regions associated with increased transcriptional output. Our findings suggest a striking relationship between promoter nucleosome-depleted regions, G4 formation and elevated transcriptional activity. Comparison between normal human epidermal keratinocytes and their immortalized counterparts revealed a 7-fold greater G4 abundance in immortalized cells, of which 80 % were found in regulatory, nucleosome-depleted regions common to both cell types. Consequently, cells exhibiting more G4s displayed significantly increased transcriptional output and were more sensitive to growth inhibition by a small molecule G4 ligand. Overall, our results provide new mechanistic insights into where and when DNA adopts G4 structure in vivo. Our findings show for the first time that regulatory, nucleosome-depleted chromatin and transcriptional states predominantly shape the endogenous G4 DNA landscape. Two cell lines, treated with entinostat or untreated, analyzed to detect gene expression differences, presence of G-Qudruplexes and chromatin state. Each combination of conditions replicated in duplicates or triplicates.
privacy:
not applicable
aggregation:
instance of dataset
ID:
E-GEOD-76688
refinement:
raw
alternateIdentifiers:
76688
keywords:
functional genomics
dateModified:
08-14-2016
availability:
available
types:
gene expression
name:
Homo sapiens
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-76688/E-GEOD-76688.raw.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-76688/E-GEOD-76688.processed.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE76688
storedIn:
Gene Expression Omnibus
qualifier:
not compressed
format:
HTML
accessType:
landing page
primary:
true
authentication:
none
authorization:
none
abbreviation:
EBI
homePage: http://www.ebi.ac.uk/
ID:
SCR:004727
name:
European Bioinformatics Institute
homePage: https://www.ebi.ac.uk/arrayexpress/
ID:
SCR:002964
name:
ArrayExpress

Feedback?

If you are having problems using our tools, or if you would just like to send us some feedback, please post your questions on GitHub.