Mountain View
biomedical and healthCAre Data Discovery Index Ecosystem
help Advanced Search
Title: Massively parallel interrogation of the effects of gene expression levels on cellular fitness      
dateReleased:
08-25-2016
description:
Data of gene expression levels across individuals, cell types, and disease states is rapidly expanding, yet we have limited understanding of how expression levels impact cellular and organismal phenotypes. Here, we present a massively parallel system for assaying the effect of gene expression levels on cellular fitness in Saccharomyces cerevisiae by systematically altering the expression level of each of ~100 endogenous genes at ~100 distinct expression levels spanning a 500-fold range at high resolution. Our results show that the relationship between expression levels and growth is gene- and environment-specific, with the specific relationship exhibited by each gene being highly informative on its function, stoichiometry within complexes, and interaction with other genes. Notably, in one of the two environmental conditions that we tested, we find that ~20% of the genes have expression levels where fitness is greater than that at wild-type expression levels, indicating that wild-type expression is not optimal for growth in that condition. We find that genes whose fitness is greatly affected by small changes in expression level tend to exhibit lower cell-to-cell variability in expression, suggesting that noise in gene expression is shaped in part by the relationship between expression and fitness. Overall, our study addresses a fundamental gap in our understanding of the functional significance of gene expression regulation and offers a powerful framework for evaluating the phenotypic effects of expression variation. 130 synthetic promoters were genomically integrated upstream of 96 endogenous yeast genes to span an expression range for each gene. Fitness as a function of the expression level of each gene was computed by a pooled growth competition assay.
privacy:
not applicable
aggregation:
instance of dataset
ID:
E-GEOD-83936
refinement:
raw
alternateIdentifiers:
83936
keywords:
functional genomics
dateModified:
09-12-2016
availability:
available
types:
gene expression
name:
Saccharomyces cerevisiae
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-83936/E-GEOD-83936.raw.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ebi.ac.uk/arrayexpress/files/E-GEOD-83936/E-GEOD-83936.processed.1.zip
storedIn:
ArrayExpress
qualifier:
gzip compressed
format:
TXT
accessType:
download
authentication:
none
authorization:
none
accessURL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE83936
storedIn:
Gene Expression Omnibus
qualifier:
not compressed
format:
HTML
accessType:
landing page
primary:
true
authentication:
none
authorization:
none
abbreviation:
EBI
homePage: http://www.ebi.ac.uk/
ID:
SCR:004727
name:
European Bioinformatics Institute
homePage: https://www.ebi.ac.uk/arrayexpress/
ID:
SCR:002964
name:
ArrayExpress

Feedback?

If you are having problems using our tools, or if you would just like to send us some feedback, please post your questions on GitHub.